5.Hadoop搭建
5.1 hadoop单机版搭建
1.修改主机
查看主机:Hostname-f
修改主机:vim/etc/sysconfig/network
修改主机为hadoop01
修改映射关系
vim /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.0.2 hadoop01
2.配置hadoop
2.1修改hadoop-env.sh
export JAVA_HOME=/user/src/java/jdk1.7.0_79
2.2 修改core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop01:9000</value>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://hadoop01:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/hadoop-2.4.1/tmp</value>
</property>
</configuration>
2.3修改hdfs-site.xml
<!--hadoop集群副本数-->
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>
2.4修改mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
2.5修改yarn-site.xml
<configuration>
<property>
<name>yarn.resourcemanager</name>
<value>hadoop01</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
3.将hadoop添加到环境变量
#set java
JAVA_HOME=/user/src/java/jdk1.7.0_79
export PATH=${JAVA_HOME}/bin:$PATH
#set hadoop
export HADOOP_HOME=/opt/hadoop-2.4.1
exportPATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
4.格式化namenode
Hdfs namenode -format 或者 hadoop namenode -format
5.启动hadoop
start-all.sh
6.配置ssh免密码登录
cd ~/.ssh/
ssh-keygen -t rsa 回车 回车...
ssh-copy-id localhost
输入本机密码
5.2 hadoopHA测试环境搭建
非HA弊端HDFS集群的分布式存储是靠namenode节点(namenode负责响应客户端请求)来实现。在非HA集群中一旦namenode宕机,虽然元数据不会丢失,但整个集群将无法对外提供服务,导致HDFS服务的可靠性不高,这在实际应用场景中显然是不可行的。HA机制
已知导致服务可靠性不高的原因是namenode节点宕机,那么怎么才能避免这个namenode节点宕机呢?一个容易想到的解决方案是部署两台namenode节点,形成主备模式(active/standby模式),这样一旦active节点宕机,standby节点立即切换到active模式。事实上HA机制就是采取的这种方案。要想实现该机制,需要解决以下问题:
1.为什么选择主备模式,而不是主主模式(active/active模式),也即让两个namenode节点都响应客户端的请求
一个显然的前提是,两台namenode节点需要保存一致的元数据。
我们知道namenode节点是用来管理这些元数据的,响应客户端请求时(上传)需要增加元数据信息,如果使用主主模式,那么两个节点都将对元数据进行写操作,怎么同步是个很困难的问题。因此,只能有一台机器响应请求,也即处在active状态的节点(可称为主节点),而另一台namenode在主节点正常工作情况下仅用来同步active节点的元数据信息,这个namenode称为备用节点(处在standby状态),可见,要解决的问题主要是怎么同步active节点的元数据信息。
2.怎么同步两个namenode节点的元数据
响应客户端请求的是active节点,因此只有active节点保存了最新的元数据。元数据分为两部分,一部分是刚写入新的元数据(edits),另一部分是合并后的较旧的(fsimage)。HA机制解决同步问题的方法是将active节点新写入的edits元数据放在zookeeper集群上(zookeeper集群主要功能是实现少量数据的分布式同步管理),standby节点在active节点正常情况下只需要将zookeeper集群上edits文件同步到自己的fsimage中就可以。
Hadoop框架为这个集群专门写了个分布式应用qjournal(依赖zookeeper实现),实现qjournal的节点称为journalnode。
3.怎么感知active节点是否宕机,并将standby节点快速切换到active状态?
解决方案是专门在namenode节点上启动一个监控进程,时刻监控namenode的状态。对于处在active状态的namenode,如果发现不正常就向zookeeper集群中写入一些数据。对于处在standby状态的namenode,监控进程从zookeeper集群中读数据,从而感知到active节点是否正常。如果发现异常,监控进程负责将standby状态切换到active状态。这个监控进程在hadoop中叫做zkfc(依赖zookeeper实现)。
4.如何在状态切换时避免brain split(脑裂)?
脑裂:active namenode工作不正常后,zkfc在zookeeper中写入一些数据,表明异常,这时standby namenode中的zkfc读到异常信息,并将standby节点置为active。但是,如果之前的active namenode并没有真的死掉,出现了假死(死了一会儿后又正常了,哈哈,是不是很搞笑),这样,就有两台namenode同时工作了。这种现象称为脑裂。
解决方案:standby namenode感知到主用节点出现异常后并不会立即切换状态,zkfc会首先通过ssh远程杀死active节点的 namenode进程(kill -9 进程号)。但是(这样还不行,惊讶),如果kill指令没有执行成功咋办??如果在一段时间内没有收到执行成功的回执,standby节点会执行一个自定义脚本,尽量保证不会出现脑裂问题!这个机制在hadoop中称为fencing(包括ssh发送kill指令,执行自定义脚本两道保障)
解决上诉问题以后,基本上就实现了hadoop HA 。
HA实现
1.HA集群规划
主机名 | 软件 | 进程 |
sempplsl-02 | jdk,hadoop,zookeeper | QuorumPeerMain(zookeeper),journalnode,datanode,nodemanager |
sempplsl-03 | jdk,hadoop,zookeeper | QuorumPeerMain(zookeeper),journalnode,datanode,nodemanager |
sempplsl-04 | jdk,hadoop,zookeeper | QuorumPeerMain(zookeeper),journalnode,datanode,nodemanager |
sempplsl-05 | jdk,hadoop | namenode,zkfc(active) |
sempplsl-06 | jdk,hadoop | namenode,zkfc |
sempplsl-07 | jdk,hadoop | resourcemanager |
sempplsl-08 | jdk,hadoop | resourcemanager |
(注:datanode,nodemanager一般放到一起。journalnode依赖zookeeper来实现,因此QuorumPeerMain(zookeeper),journalnode必须放一起!)
2.hadoopHA集群配置
core-site.xml ---->
[html] view plain copy
1. <property>
2. <!-- 指定hdfs的nameservice为ns1 -->
3. <name>fs.defaultFS</name>
4. <value>hdfs://ns1/</value>
5. </property>
6. <!-- 指定hadoop临时目录 -->
7. <property>
8. <name>hadoop.tmp.dir</name>
9. <value>/home/hadoop/app/hadoop-2.4.1/tmp</value>
10. </property>
11. <!-- 指定zookeeper地址 -->
12. <property>
13. <name>ha.zookeeper.quorum</name>
14. <value>sempplsl-02:2181,sempplsl-03:2181,sempplsl-04:2181</value>
15. </property>
hdfs-site.xml --->
[html] view plain copy
1. <!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
2. <property>
3. <name>dfs.nameservices</name>
4. <value>ns1</value>
5. </property>
6. <!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
7. <property>
8. <name>dfs.ha.namenodes.ns1</name>
9. <value>nn1,nn2</value>
10. </property>
11. <!-- nn1的RPC通信地址 -->
12. <property>
13. <name>dfs.namenode.rpc-address.ns1.nn1</name>
14. <value>sempplsl-05:9000</value>
15. </property>
16. <!-- nn1的http通信地址 -->
17. <property>
18. <name>dfs.namenode.http-address.ns1.nn1</name>
19. <value>sempplsl-05:50070</value>
20. </property>
21. <!-- nn2的RPC通信地址 -->
22. <property>
23. <name>dfs.namenode.rpc-address.ns1.nn2</name>
24. <value>sempplsl-06:9000</value>
25. </property>
26. <!-- nn2的http通信地址 -->
27. <property>
28. <name>dfs.namenode.http-address.ns1.nn2</name>
29. <value>sempplsl-06:50070</value>
30. </property>
31. <!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
32. <property>
33. <name>dfs.namenode.shared.edits.dir</name>
34. <value>qjournal://sempplsl-02:8485;sempplsl-03:8485;sempplsl-04:8485/ns1</value>
35. </property>
36. <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
37. <property>
38. <name>dfs.journalnode.edits.dir</name>
39. <value>/home/hadoop/app/hadoop-2.4.1/journaldata</value>
40. </property>
41. <!-- 开启NameNode失败自动切换 -->
42. <property>
43. <name>dfs.ha.automatic-failover.enabled</name>
44. <value>true</value>
45. </property>
46. <!-- 配置失败自动切换实现方式 -->
47. <property>
48. <name>dfs.client.failover.proxy.provider.ns1</name>
49. <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
50. </property>
51. <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
52. <property>
53. <name>dfs.ha.fencing.methods</name>
54. <value>
55. sshfence
56. shell(/bin/true)
57. </value>
58. </property>
59. <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
60. <property>
61. <name>dfs.ha.fencing.ssh.private-key-files</name>
62. <value>/home/hadoop/.ssh/id_rsa</value>
63. </property>
64. <!-- 配置sshfence隔离机制超时时间 -->
65. <property>
66. <name>dfs.ha.fencing.ssh.connect-timeout</name>
67. <value>30000</value>
68. </property>
yarn-site.xml --->
[html] view plain copy
1. <!-- 开启RM高可用 -->
2. <property>
3. <name>yarn.resourcemanager.ha.enabled</name>
4. <value>true</value>
5. </property>
6. <!-- 指定RM的cluster id -->
7. <property>
8. <name>yarn.resourcemanager.cluster-id</name>
9. <value>yrc</value>
10. </property>
11. <!-- 指定RM的名字 -->
12. <property>
13. <name>yarn.resourcemanager.ha.rm-ids</name>
14. <value>rm1,rm2</value>
15. </property>
16. <!-- 分别指定RM的地址 -->
17. <property>
18. <name>yarn.resourcemanager.hostname.rm1</name>
19. <value>sempplsl-07</value>
20. </property>
21. <property>
22. <name>yarn.resourcemanager.hostname.rm2</name>
23. <value>sempplsl-08</value>
24. </property>
25. <!-- 指定zk集群地址 -->
26. <property>
27. <name>yarn.resourcemanager.zk-address</name>
28. <value>sempplsl-02:2181,sempplsl-03:2181,sempplsl-04:2181</value>
29. </property>
30. <property>
31. <name>yarn.nodemanager.aux-services</name>
32. <value>mapreduce_shuffle</value>
33. </property>
marped-site.xml--->
[html] view plain copy
1. <!-- 指定mr框架为yarn方式 -->
2. <property>
3. <name>mapreduce.framework.name</name>
4. <value>yarn</value>
5. </property>
3.HA集群启动
3.1. 修改slaves文件
slaves文件保存子节点的位置,要在sempplsl-05上启动hdfs,按照集群配置,需要指定datanode在sempplsl-02,sempplsl-03,sempplsl-04上,方法是进入sempplsl-05机器中的hadoop-2.4.1/etc/hadoop安装文件夹。
此外,在sempplsl-07上启动yarn,按照集群配置,需要指定nodemanager在sempplsl-02,sempplsl-03,sempplsl-04上,方法同上。
3.2.配置无密钥登陆
配置sempplsl-05到sempplsl-02,sempplsl-03,sempplsl-04,sempplsl-06的无密钥登陆;(ssh-keygen -t rsa,ssh-copy-id 目标主机)
配置sempplsl-07到sempplsl-02,sempplsl-03,sempplsl-04,sempplsl-08的无密钥登陆;
3.3.将配置好的hadoop copy到集群其它节点
scp -r
3.4.启动zookeeper集群
分别在sempplsl-02,sempplsl-03,sempplsl-04机器上执行启动指令:./zkServer.sh start
查看zookeeper状态:./zkServer.sh status, 正确的状态是一个leader,两个follower。
3.5.启动journalnode
分别在sempplsl-02,sempplsl-03,sempplsl-04机器上执行启动指令:sbin/hadoop-daemon.sh start journalnode。
启动成功后会多出一个JournalNode进程。
3.6. 格式化HDFS
在sempplsl-05上执行格式化指令:hadoop namenode -format(第一次选择Y,重启集群选择N。不要改变集群节点)
将namenode01的tmp拷贝到namenode02
3.7.格式化zkfc
在sempplsl-05上执行格式化指令: hdfs zkfc -formatZK (重启不用管)
格式化成功后会在zookeeper集群建立新的文件路径(该路径下存放zkfc监控namenode节点的信息)
3.8.启动HDFS
在sempplsl-05上执行:start-dfs.sh。
3.9.启动yarn
在sempplsl-07上执行sbin/start-yarn.sh
在sempplsl-08上执行./yarn-daemon.sh start resourcemanager
至此,HA集群启动成功!