Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network(CVPR2018)

Abstruct

尽管全卷积网络在识别模型局部特征方面十分成熟,但是由于他们的感受域有限,并不能整合全局上下文。我们提出了新的方法,将全局上下文直接引入全卷积神经网络,关键是网络中的隐形核心卷积网络。核心卷积模糊了局部上下文分支网络的结果,然后交由全局上下文使用扩展卷积网络进行提取。核心卷积网络之所以重要是因为它平滑了梯度变化,减小了过度拟合,这对网络聚合很关键。在后面处理的过程中,使用基于PCA的2D形状模型去适应网络产出,这样可以过滤离群值。

1.introduce

全卷积结构的优点(尤其是使用热点图递归的人脸关键点识别)
与图片分辨率无关
不依赖于合适的兴趣区
可以处理空或者多个输出
可以处理裁切不正和遮挡图像
需要更少参数,脚本占用内存更少
全卷积结构的缺点
接收域有限所以没有全局上下文信息
贡献
提出了核卷积
用扩展卷积扩大感受野
整个方法可以不适用人脸检测

方法思想:全局上下文信息可以通过接收有效域的严格增加整合到网络里。
方法实现:使用二维或简单卷积核的卷积网络,和使用扩展卷积的全局上下文分支网络

2.相关工作

2.1 模型匹配关键点检测

2.2 递归关键点检测

2.3 全卷积热点图递归关键点检测

3 局部-全局上下文网络

将全局上下文考虑在内,由点分布模型进行提取,并组成了额外的错误源所以更为健壮,隐式核让网络更加专注,扩展卷积网络消除了过度拟合的问题。

1 处理

图片:96*96px灰度图(调查得出,也可以没有)
架构图

3.2 网络架构

1 局部上下文,全卷积网络
2 静态定制核卷积
3 全局上下文扩展卷积网络
4 相比卷积内核标记的类方误差损失

3.2.1 局部上下文分支网络

低等级特征的局部探测
15个零填充的卷积层和一个用于抵消批次差距的线性1*1卷积

3.2.2 核卷积

局部上下文子网结果以通道方式与内核进行卷积,核卷积类似于分组卷积,每组大小为1,在训练和预测时都会被计算,并且在反向传播时对网络透明,所以不会影响局部上下文分支网络的结果。
核卷积使用原因:像素级的方差和预测与真实坐标的方差有关,全局上下文子网使用扩张卷积
要权衡准确率和离散健壮性,处理后的结果已经具有区别性。
我们使用的是45*45px的核。

3.2.3 全局子网

聚合局部上下文子网的结果,使用扩张卷积扩大有效接收域并且减少过度拟合,由于结果已经被卷积核平滑处理过,所以扩张卷积本身的在下滑线的欠采样问题也能够解决。
方法的基本原理:全局上下文子网的目的是处理大的图片而不是以像素为精度考量,它让网络去收集(矛盾)信息,然后它来统一处理这些信息,得出最合理的预测。
组成:七个 0连续填充的扩张卷积,每四个像素取样一次,3x3的核,一个1x1的线性卷积去做块归一化。

3.2.4 损失

去掉边界外的点,并据此计算每个点的权重

3.3 热点图匹配

我们使用了阈值,并将通道级的局部最大值作为真实检测,由于它偶尔会导致离群值,所以我们把输出的热点图看成是可能性图,并适应pca为基础的2d模型。
为了减小离群值的影响,我们只提取适应结果在预测点一定范围内的点。

conclusion

我们的方法是一种全卷积热点图递归算法,核心是局部上下文子网和全局上下文子网之间的隐式核卷积。局部上下文子网是为了寻找特征点,全局上下文子网再将这些特征进行提取,再用PCA模型进行后处理以恢复匹配点。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值