LeetCode 698. Partition to K Equal Sum Subsets 划分为k个相等的子集(典型递归问题)

LeetCode 698. Partition to K Equal Sum Subsets 划分为k个相等的子集:典型递归问题

698. Partition to K Equal Sum Subsets 划分为k个相等的子集

题目描述

Given an array of integers nums and a positive integer k, find whether it’s possible to divide this array into k non-empty subsets whose sums are all equal.

Note:

1 <= k <= len(nums) <= 16.
0 < nums[i] < 10000.

示例:

Example 1:

Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.

解答

这道题求的是能否把一个数组中的数,分割成k部分,这k部分的值相等。

对于这种问题,我们可以转化为找到数组的k个子集合,要求每个子集合的值为sum / k, 其中sum是数组值的总和。

然后我们就用递归去找子集合,如果能找到k个子集合就返回true,否则返回false。

递归的时候需要maintain一个visit数组来保存已经访问的点。

代码

class Solution {
vector<int> visit;
int part = 0;   
public:
    bool canPartitionKSubsets(vector<int>& nums, int k) {
        int sumOfnums = 0;
        for (auto & num : nums)
            sumOfnums += num;
        
        if (sumOfnums % k) return false;
        visit = vector<int>(nums.size(), 0);
        part = sumOfnums / k;
        return canPartition(nums, k, 0, 0);
    }

    bool canPartition(vector<int>& nums, int k, int curSum, int start) {
        if (k == 0) {
            return true;
        }
        if (curSum > part) return false;
        if (curSum == part) {
            //cout << k;
            return canPartition(nums, k - 1, 0, 0);
        }
        
        for (int i = start; i < nums.size(); i ++) {
            if (!visit[i]) {
                visit[i] = 1;
                if(canPartition(nums, k, curSum + nums[i], i + 1)) return true;
                visit[i] = 0;
            }
        }
        return false;
    }

};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值