给出一个小于2322^{32}232的正整数。这个数可以用一个323232位的二进制数表示(不足323232位用000补足)。我们称这个二进制数的前161616位为“高位”,后161616位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。
例如,数131452013145201314520用二进制表示为000000000001010000001110110110000000 0000 0001 0100 0000 1110 1101 100000000000000101000000111011011000(添加了111111个前导000补足为323232位),其中前161616位为高位,即00000000000101000000 0000 0001 01000000000000010100;后161616位为低位,即00001110110110000000 1110 1101 10000000111011011000。将它的高低位进行交换,我们得到了一个新的二进制数000011101101100000000000000101000000 1110 1101 1000 0000 0000 0001 010000001110110110000000000000010100。它即是十进制的249036820249036820249036820。
输入格式
一个小于2322^{32}232的正整数
输出格式
将新的数输出
输入输出样例
输入 #1
1314520
输出 #1
249036820
// #define debug
#ifdef debug
#include <time.h>
#include "/home/majiao/mb.h"
#endif
#include <iostream>
#include <algorithm>
#include <vector>
#include <string.h>
#define MAXN 10005
#include <map>
#include <unordered_set>
#define ll long long int
#define IS_PRIME(x) (!vis[x])
using namespace std;
int pn, n, m, prime[MAXN], vis[MAXN];
void getp() {
vis[0] = vis[1] = true;
for(int i=2; i<MAXN; i++) {
if(!vis[i]) prime[pn++] = i;
for(int k=0; k<pn && i*prime[k]<MAXN; k++) {
vis[i*prime[k]] = true;
if(i % prime[k] == 0) break;
}
}
}
int main() {
#ifdef debug
freopen("test", "r", stdin);
clock_t stime = clock();
#endif
unsigned int x;
scanf("%u ", &x);
printf("%u\n", (x<<16)+(x>>16));
#ifdef debug
clock_t etime = clock();
printf("rum time: %lf 秒\n",(double) (etime-stime)/CLOCKS_PER_SEC);
#endif
return 0;
}