题目描述
给你 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [4,3,2,1,4]
输出:16
分析:求解最大矩形面积,由两个因素决定,矩形的长度:j - i,以及矩形的高度,其中,盛水高度取决于左右高度最小的高度:Math.min(height[i], height[j]),然后将每次计算的面积area与最大面积maxArea比较,取较大者;i 指针向右加,j 指针向左减,遍历整个数组。
class Solution {
public int maxArea(int[] height) {
if (height == null || height.length == 0) {
return 0;
}
int maxArea = 0;
int i = 0, j = height.length - 1;
while (i < j) {
int area = Math.min(height[i], height[j]) * (j - i);
maxArea = Math.max(maxArea, area);
if (height[i] <= height[j]) {
i++;
} else {
j--;
}
}
return maxArea;
}
public int maxArea2(int[] height) {
if (height == null || height.length == 0) {
return 0;
}
int maxArea = 0;
for (int i = 0, j = height.length - 1; i < j; ) {
int minHeight = height[i] < height[j] ? height[i++] : height[j--];
int area = (j - i + 1) * minHeight;
maxArea = Math.max(area, maxArea);
}
return maxArea;
}
public int maxArea3(int[] height) {
if (height == null || height.length == 0) {
return 0;
}
int i = 0, j = height.length - 1, res = 0;
while (i < j) {
res = height[i] < height[j] ?
Math.max(res, (j - i) * height[i++]) :
Math.max(res, (j - i) * height[j--]);
}
return res;
}
}