前言
本文介绍下分布式锁的一个使用场景
分享本文的缘由是因为今天在写代码时需要处理一个原子性问题,场景是:业务功能需要先查询数据,再根据数据判断是否要更新数据,在这个查询+更新的过程必然会存在高并发下的原子性问题
那么如何解决这个问题呢,那么就要说到我们的主角:分布式锁了
分布式锁介绍
分布式锁:即在多集群多节点环境下确保只有一个线程可以拿到锁,防止并发出现的问题,类似于synchronized,只不过synchronized不能处理多节点的问题
解决上述问题的一种解决方式就是使用分布式锁,虽然性能会比较低,但是笔者的场景是一个统计功能,并且是异步的,所以并不影响性能
核心代码如下:
场景介绍
try {
// 这里可以根据业务场景做分段锁,可以适当提升性能
String lock = "lock_key";
long keyValue = System.currentTimeMillis();
// 获取锁,超时时间60秒每隔0.5秒尝试获取一次,60秒后没获取到则放弃
boolean getLock = redisUtils.getLockByInterval(lock,keyValue,60,0.5,0);
if(getLock) {
xxx
}
} catch (Exception e) {
log.error("异常:", e);
} finally {
if(getLock) {
redisUtils.unLock(lock,keyValue);
}
}
RedisUtils类getLockByInterval
/**
* 获取锁,如果没获取到那么每隔interval秒重试一次,重试直到timeout秒
* @param key
* @param value
* @param timeout 超时时间(单位秒)
* @param interval 超时时间(单位秒)
* @param currentTime 当前时间,调用时传0,只用于递归时间
* @return
*/
public boolean getLockByInterval(String key,Object value,int timeout,double interval,double currentTime) {
if(currentTime > timeout) {
return false;
}
// 相当于redis的setnx命令
boolean getLock = redisTemplate.opsForValue().setIfAbsent(key,value,timeout, TimeUnit.SECONDS);
if(!getLock) {
//没有拿到锁就间隔interval再次尝试获取锁,直到总时间大于timeout
try {
Thread.sleep(Double.valueOf(interval*1000).longValue());
} catch (InterruptedException e) {
log.error("RedisUtils getLockByInterval error:",e);
}
currentTime += interval;
// 递归
return getLockByInterval(key,value,timeout,interval,currentTime);
}
return true;
}
上述代码其实还是不够完美,当并发量足够大时可能存在某线程在超时时间内还是没有抢占到锁,因为获取锁的机制是按照间隔时间来获取的,并且属于非公平锁,即不是先到的线程有权利优先获取锁,这里可以看到redis的分布式锁并不是很友好,这里再介绍下zookeeper的分布式锁
分布式锁对比
redis分布式锁:通过redis通过的sexNx命令实现,即当key不存在时调用setNx返回true,否则返回false,获取不到锁的线程只能轮询去尝试获取锁
优点:性能高,使用简单,在允许偶发锁失效的场景下推荐使用
缺点:通过轮询抢占锁的机制不是很可靠,当某线程占用锁时间较长时可能导致其他线程抢占锁失败
zookeeper分布式锁:zk的分布式锁机制是利用zk的临时有序节点,即多个线程同时抢占锁会创建多个节点如a1->a2->a3->a4->a5…,只有拿到第一个节点的线程获得锁,里面节点注册是的watch机制,即a1使用完后会释放当前节点,同时watch下一个节点a2,依次类推
优点:不依靠轮询抢占锁,依靠的是节点间的通信,比较可靠,当业务场景要求比较高是推荐使用
缺点:性能不如redis缓存锁高