P10:逻辑回归

        源视频

一、逻辑回归 vs 线性回归(尤其注意损失函数):

        虽然损失函数定义的不一样,但是最后化简后发现和线性回归是一样的。

        那为什么把逻辑回归的损失函数定义成square error呢?原因如下:

        总结:当定义成square error时,随机参数一般会使模型离最理想的状态还有一定差距,但是这个时候模型的学习的梯度会非常小,甚至为0,不利于模型的收敛,故采用cross entropy。

二、同一组数据采用生成式和判别方法最后有什么不同

        判别式:直接求解参数(w和b);对数据不做任何假设。

        生成式:需要求解u1,u2和∑;需要对数据的分布做假设(比如高斯,伯努利分布等)。

        所以,一般情况下判别式求解的模型会比生成式的要好。但生成式也有自己的优势,如下:

三、多分类

四、逻辑回归和神经网络的关系

        实质是多个逻辑回归单元组成的结构被称为神经网络

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值