qq_31119477的博客

随手笔记

最长公共子序列

最长公共子序列

解题思路

此题是经典的动态规划题,直接给出状态转移方程
if( a(m) == b(n) )
dp[m][n] = dp[m-1][n-1] + 1
else
dp[m][n] = max(dp[m-1][n], dp[m][n-1])

代码

#include<iostream>
#include <vector>

using namespace std;

class Solution {
public:
    /**
     * @param A: A string
     * @param B: A string
     * @return: The length of longest common subsequence of A and B
     */
    int longestCommonSubsequence(string &A, string &B) {
        // write your code here
        int len1 = A.length();
        int len2 = B.length();
        vector<vector<int> > dp(len2+1, vector<int>(len1+1, 0));
        for(int i=1;i<len2+1;i++)
        {
            for(int j=1;j<len1+1;j++)
            {

                if(A[j] == B[i])
                {
                    dp[i][j] = dp[i-1][j-1] + 1;
                }
                else
                {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
                cout<<i<<" "<<j<<endl;
            }
        }
        return dp[len2][len1];
    }
};

int main()
{
    string s1 = "12342343535";
    string s2 = "23123425";
    Solution solution;
    cout<<solution.longestCommonSubsequence(s1, s2)<<endl;
}
阅读更多
文章标签: 数据结构
个人分类: 数据结构
上一篇回文子序列数(京东暑期实习笔试题)
下一篇Edit Distance
想对作者说点什么? 我来说一句

最长公共子序列实验报告

2010年04月25日 117KB 下载

ACM-最长公共子序列

LCS

u011787119 u011787119

2015-03-31 23:48:49

阅读数:733

没有更多推荐了,返回首页

关闭
关闭