1.算法时间复杂度(算法的时间的量度)
T(n) = O(f(n))
定义:在计算算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量.
执行次数 = 时间
最优算法—->随着时间的增大,T(n)增长最慢的算法最优
2.推导算法时间复杂度(大O阶)的方法:
1) 常数1取代运行时间中的所有加法常数—–>O(1)
2) 在修改后的运行次数函数中,只保留最高阶项。
3)如果最高项阶存在且不为1,那么去除在于这个项相乘的常数。———>大O阶
常数阶,O(1)
线性阶,一般含有非嵌套循环(单个循环)的会涉及到,就是随着函数规模n的扩大,对应计算次数呈之前增长O(n)
平方阶,含有嵌套循环(多个循环)O(n^循环次数)
对数阶,比如O(logn)
3.函数调用的时间复杂度分析
常用的时间复杂度所耗费的时间从小到大一次为:O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)
4.最坏情况O(n)与平均情况(期望的平均运行时间)
1.算法的空间复杂度
S(n) = O(f(n))—–>f(n)指的是关于n所存储空间的函数
通过计算算法所需的存储空间实现