时间复杂度和空间复杂度(第二天)

1.算法时间复杂度(算法的时间的量度)

T(n) = O(f(n))

定义:在计算算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量.

执行次数 = 时间
最优算法—->随着时间的增大,T(n)增长最慢的算法最优

2.推导算法时间复杂度(大O阶)的方法:
1) 常数1取代运行时间中的所有加法常数—–>O(1)
2) 在修改后的运行次数函数中,只保留最高阶项。
3)如果最高项阶存在且不为1,那么去除在于这个项相乘的常数。———>大O阶

常数阶,O(1)

线性阶,一般含有非嵌套循环(单个循环)的会涉及到,就是随着函数规模n的扩大,对应计算次数呈之前增长O(n)

平方阶,含有嵌套循环(多个循环)O(n^循环次数)

对数阶,比如O(logn)

3.函数调用的时间复杂度分析
常用的时间复杂度所耗费的时间从小到大一次为:O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

4.最坏情况O(n)与平均情况(期望的平均运行时间)


1.算法的空间复杂度
S(n) = O(f(n))—–>f(n)指的是关于n所存储空间的函数
通过计算算法所需的存储空间实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值