Mathematics for Computer Science

什么是证明【proof】?

证明的存在是超越数学的,那么证明的更高层次的概念是什么?它可能没有潜在的逻辑推导【logical deduction】,也可能没有假设【assumption】。

我认为一般来说,证据【proof】被认为是,跨多个领域【field】,作为一种确定【ascertaing】真理【truth】的方法。这里所说的确定【ascertaing】,是指建立【establishing】真理,验证【verifying】真理。

在社会中,甚至在科学中,有很多方法可以确定真理【ascertaing truth】:

  • 实验【experimentation】:观察【observation】,就像看到那块粉笔会掉到地上,,它是物理学的基石,谁知道外面是否有重力?我们可以通过观察,然后我们得出结论,这就是事实
  • 抽样【sampling】:反例【counter example
  • 法官【judge】和陪审团【jury】
  • 宗教【religion】:圣经
  • 信仰【conviction】:我的程序没有bug

在数学中,数学证明是通过一系列公理【axioms】的逻辑推导【logical deduction】来对一个命题【proposition】的验证【verification】。

这有点拗口,这里有三个重要的组件:

  • 命题【proposition】
  • 公理【axioms】
  • 逻辑推导【logical deduction】

命题 

命题【proposition】是一种非真即假的陈述【statement】。

栗子1(真命题)

2 + 3 = 5

栗子2(假命题)

对所有自然数 {0,1,2,3,4...}  n ,n^{2} + n + 41 是一个质数【prime number】

 ∀ n ∈ N   , n^{2} + n + 41 是一个质数

  •  n^{2} + n + 41 是一个质数,也被称为谓词【predicate】,谓词【predicate】是一个命题【proposition】,其真值【truth】取决于变量的值。在这里,变量指的是 n。
  •   {0,1,2,3,4...}  则被称为论域【universe of discourse】,这是我们谈论的所有事物的空间,在这里,我们只谈论自然数。
  • ∀ 被称为量词【quantifier】

如果要证明该命题成立,那么我们就要证明谓词在所有自然数下均成立。

n n^{2} + n + 41质数
143true
391601true
401681false 41 * 41
411763false 41 * 43

                           

 栗子3

a^{4} + b^{4} + c^{4} = d^{4} 没有正数解 

该命题由尤拉提出,218年后,一个名叫诺姆·埃尔基斯的聪明人终于否决了这个猜想。

a = 95800

b = 217519

c = 414560

d = 422481

所以,真命题应该是 :

∃ a,b,c,d ∈ N+ ,a^{4} + b^{4} + c^{4} = d^{4} 

其中:

  • ∃ 是量词【quantifier】,表示存在
  • a^{4} + b^{4} + c^{4} = d^{4} 是谓词

  

 栗子4

 ∀ n ∈ Z ,n \geq 2 => n^{2} \geq 4

其中:

  • 指的是 integer,{0,1,-1,2,-2 ...}
  • => 符号是蕴含【implies】

我们现在来定义蕴含【implies】的意义:

当 p 是 false 或者 q 是true 时,则蕴含【implication】p => q 就是真。

下面是真值表【truth table】:

truth table
pqp => q
TTT
TFF
FTT
FFT

false 蕴含一切都是 true,这看上去有点奇怪。

有一个著名的表达,如果猪能飞,我就当国王了。

这段陈述可以写作:pigs fly => i'm king,它是 true ,因为猪不会飞,不管我是不是国王。因为猪不会飞,尽管这是 false 的,但这句话的蕴含是 true 的。

栗子5

 ∀ n ∈ Z ,n \geq 2 <=> n^{2} \geq 4

该命题为假,例如 n = -3 

truth table
pqp=>qq=>qp<=>q
TTTTT
TFFTF
FTTFF
FFTTT

 

这里的关键是总是检查两种方式【way】。

这里为了证明 <=>【if and only if】,我们需要检查 => ,也需要检查 <=。

提问:每个句子【sentence】都是一个命题吗?

答案:No~ 比如"hello","how are you"

公理 axioms

好消息是,公理和命题其实是一回事~

唯一的区别是,公理【axioms】是我们假设【assumed】为真的命题【propositions】

没有证明【proof】能证实公理【axiom】是真的,你只是假设它是合理的~~

公理【axiom】一词来源于希腊,在希腊语中,这并不意味着真,而是意味着值得思考【think worthy】。

在数学中,有很多公理:

  • if a = b,b = c,then a = c

公理在不同的上下文下可能是矛盾的~

在欧几里得几何中有这么一个中心公理

  • 给定一条线L和一个不在L上的点P,有一条通过P平行于L的线

但是还有一个领域叫做球面几何,这里,你有一个与之相矛盾的公理:

  • 给定一条线L和一个不在L上的点P,不存在一条通过P且平行于L的线

还有一个领域叫双曲几何【hyperbolic geometry】:

  • 给定一条线L和一个不在L上的点P,有无穷多条经过p平行于L的直线

它们在各自的上下文中是有意义的~~

公理有两个指导原则,公理应该:

  • consistent 一致的
  • complete   完备的

Def:如果没有一个命题可以被证明即是真又是假,则该公理集是一致的【consistent】

Def:如果一组公理能被用来证明每个命题的真或假,那么它就被称为完备的【complete】

这是可取的,因为这意味着您可以解决所有问题,你可以证明任何事是真还是假。

现在你会认为得到一组满足这两个基本性质的公理集应该不会太难。你想要一个足够强大的公理集来证明一切的真假。

事实证明并非如此!!事实上,许多逻辑学家的职业生涯都在试图找到这样一组公理,它们是一致且完备的。

事实上,罗素和怀特黑德可能是最有名的两个,他们花费了整个生涯都在做这件事,但还是没得到。

然后有一天,这个叫库尔特·戈德尔【kurt Godel】的家伙出现了,在 1930 年代,他证明不可能存在任何一组既一致又完备的公理集。现在,这个发现摧毁了这个领域,这是一个巨大的发现。

这是一个了不起的结果,因为它说如果你想要一致性【consistent】,就会有你永远无法证明的真实事实【true fact】。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值