2019.6.26 Coursera Machine Learning 第三周 课程笔记

总结:

https://blog.csdn.net/kepengs/article/details/84846182

https://blog.csdn.net/u012052268/article/details/78653293#11%E5%88%86%E7%B1%BB%E7%9A%84%E6%A6%82%E5%BF%B5-classification

1.Classification(分类问题)

想要预测的值是离散值

二元分类问题

通常设置“命中”为1

多类分类问题

这时,不能再用线性回归算法了,引出分类算法-----逻辑回归

2.Hypothesis Representation

主题:展示假设函数的表达式

s型函数(逻辑函数):

这里的假设函数是  特征x的样本,可能取y的概率

3.Decision Boundary(决策边界)

主题:理解上面的S型函数,什么时候预测值为1.什么时候预测值趋于0

1.首先,对于假设函数来说,得到1的概率大于0.5,我们认为y=1

2.根据逻辑函数的图像,我们发现:

3.

例:得到决定边界(把不同类型数据分开的线)

一个更复杂的例子,如下图,用圆圈代表负样本,叉号代表正样本

给定这样的一个数据集,我们怎样才能使用逻辑回归,去拟合这些数据呢?

通过增加复杂的多项式特征变量,我们可以得到更复杂的决定边界,而不只是用直线分开正负样本。

如果我们有高阶多项式特征变量,会得到更复杂的决定边界

样本点和决策边界有什么关系吗?
点到直线的距离来表达样本点跟决策边界的距离,距离越大说明该点是某一类的概率就越大。

4.Cost Function(分类问题的代价函数)

如果使用之前的J函数

会发现得到的是一个非凸函数,不能得到全局最优解,我们只能使用不同的代价函数

这个代价函数是我们要用在逻辑回归上的。它的图像如下:

我们可以将上面的分段函数合并成1个

代价函数即:

为了拟合出θ,我们应该尽量使J(θ)取得最小值

我们依旧使用梯度下降法,反复更新每个θ

为了避免使用for循环,更新每一个θ,我们将θ用向量表示

5.Advanced Optimization

共轭梯度法 BFGS (变尺度法) 和L-BFGS (限制变尺度法) 是更为高级的拟合θ的算法:

这三种算法,通常不需要手动选择学习率α(可以认为算法有一个智能的内部循环)

内部循环,成为线性搜索算法,他可以自动尝试不同的学习速率α,往往收敛的比梯度下降更快

6.Multiclass Classification: One-vs-all

主题:解决如何使用逻辑回归的思想,来解决多类别分类问题

具体来说,我们会使用一个叫做:‘一对多’的分类算法

例:设计一个算法,能够自动的将邮件归类到不同的文件夹里,或者自动加上标签

设计一个算法,能够判断一个患者是否得了流感

设计一个算法,区分哪些天是晴天,多云,雨天

将它分成三个二元分类问题,我们可以拟合到3个分类器,在这三个分类器中挑选一个可信度最好的

7.过度拟合

  1. Underfit:欠拟合问题具有高偏差;Overfit:过拟合问题具有高方差。

  2. 过拟合的定义:如果训练集中有过多的特征项,训练函数过于复杂,而训练数据又非常少。我们学到的算法可能会完美的适应训练集,也就是说代价会接近与0。但是却没有对新样本的泛化能力。

  3. 解决方法:手动的选择合适的特征;或者使用模型选择算法(用来选取特征变量)。

  4. 正规化(Regularization):正则化中我们将保留所有的特征变量,但是会减小特征变量的数量级(参数数值的大小θ(j)),相当于减少参数θ(j)所对应的多项式对整个预测函数的影响。以下内容以线性回归为例。
    正规化代价函数:其中λ过大会导致欠拟合。

    正规化梯度下降:θ0不需要

    其中当参数Θ不为θ0时,梯度下降形式又可以改写为:

    正规化正规方程:其中L为(n+1)*(n+1)维矩阵。

  5.  正规化逻辑回归:

    代价函数:

    梯度下降形式和线性回归相同。

  6. 正规化逻辑回归中高级的求解参数θ方法:
     

 

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值