深度学习
Sandy_Sandy_yuan
在校研究生
展开
-
XGboost预测
import pandas as pdimport matplotlib.pyplot as pltimport mathimport xgboost_regressionimport numpy as npfrom numpy import loadtxtfrom xgboost import XGBClassifierfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accur.原创 2021-07-05 16:14:10 · 1233 阅读 · 0 评论 -
matlab深度学习之LSTM预测
matlab深度学习之LSTM利用历史序列进行预测clcclear%% 加载示例数据。%chickenpox_dataset 包含一个时序,其时间步对应于月份,值对应于病例数。%输出是一个元胞数组,其中每个元素均为单一时间步。将数据重构为行向量。data = chickenpox_dataset;data = [data{:}];figureplot(data)xlabel("Month")ylabel("Cases")title("Monthly Cases of Ch.翻译 2020-09-23 14:56:20 · 26987 阅读 · 22 评论 -
MATLAB深度学习之LSTM
MATLAB深度学习之LSTMclcclear%% 训练深度学习 LSTM 网络,进行序列到标签的分类。%XTrain 是一个包含 270 个不同长度序列的单元阵列,具有 12 个与 LPC cepstrum 系数对应的特征。%Y 是标签 1,2,...,9 的分类矢量。%XTrain 中的条目是包含 12 行(每个要素一行)和不同数量的列(每个时间步一列)的矩阵。[XTrain,YTrain] = japaneseVowelsTrainData;figureplot(XTrain{1}翻译 2020-09-22 21:45:26 · 5200 阅读 · 1 评论