概述
近年来,深度学习在医学领域慢慢的火热了起来。在图像领域,经典的各种任务包括但不限于:图像分类、目标检测、全连接网络。在医学领域,主要是将上述方式应用于医学领域中,例如:用图像分类去判断X照肺部图片判断是否出现病变(图像分类)、图片中出现的细胞与背景区分(全连接层)等等,在医学图像中使用深度学习的方法前提条件便是知道经典网络的任务。
- 主要将介绍一下几点
- 图像领域的主体网络的作用(resnet、densenet、nasnet. etcs)
- 图像分类
- 全连接网络
- 医疗图像是如何使用上述1、2、3进行相应的任务
图像领域的主体网络的作用
-
为什么会出现这些网络呢?
在图像领域中一般都会听到例如Lenet、Alexnet、resnet、mnasnet等网络,最开始这些网络被用在imagenet比赛中对图片进行特征提取,然后将提取到的特征进行分类任务以及目标检测任务,由于这些网络表现比较好,取得了当年的第一名或者前几名的成绩,后来呢,有一些人把这些网络用于其他任务对图片进行特征提取,效果也比较的好,所以可以说,主体网络的作用是对图片进行特征提取。 -
提取到的网络的特征是什么样子的呢?
卷积网络中,数据的形式都是浮点数的形式,输入图像是三个维度,分别为图片的宽度、高度、通道数。它被存储在一个三维矩阵中,主体网络则是对图像的三维矩阵进行相应的运算以获取到运算对应的结果,例如如图所示:
这是一个经典的卷积神经网络,由于当时显卡显存的限制,使用gpu训练需要利用多gpu训练,上述网络使用了两张显卡,我们仅仅只需要了解其中一张显卡的计算过程,另外一张显卡和第一张显卡计算是一样的。看图片中的下半部分是其中一张显卡的计算过程。最