在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?

逻辑题 专栏收录该内容
14 篇文章 3 订阅

在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?

答案:只有两次

思路:

  • 假设时针的角速度是ω(ω=π/6每小时),则分针的角速度为12ω,秒针的角速度为72ω。
  • 分针与时针再次重合的时间为t,则有12ωt-ωt=2π,t=12/11小时,换算成时分秒为1小时5分27.3秒,显然秒针不与时针分针重合,同样可以算出其它10次分针与时针重合时秒针都不能与它们重合。只有在正12点和0点时才会重。

  • 证明:将时针视为静止,考察分针,秒针对它的相对速度:
    12个小时作为时间单位“1”,“圈/12小时”作为速度单位,
    则分针速度为11,秒针速度为719。
    由于11与719互质,记12小时/(11*719)为时间单位Δ,
    则分针与时针重合当且仅当 t=719kΔ k∈Z
    秒针与时针重合当且仅当 t=11jΔ j∈Z
    而719与11的最小公倍数为11*719,所以若t=0时三针重合,则下一次三针重合
    必然在t=11*719*Δ时,即t=12点。

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值