链表14

1、题目:

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:

Given the sorted linked list: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
     / \
   -3   9
   /   /
 -10  5

2、解答:平衡二叉树,问题关键是找到根结点,由于链表是升序的,所以找到中间结点,然后递归

3、C++代码

class Solution {
public:
    TreeNode* sortedListToBST(ListNode* head) {
        return sortedListToBST(head,NULL);
    }

private:
    TreeNode *sortedListToBST(ListNode *head,ListNode *tail){
       if(head == tail)
           return NULL;
       if(head->next == tail){
           TreeNode *root = new TreeNode(head->val);
           return root;
       }
       
       ListNode *mid = head,*temp = head;
       while(temp != tail && temp->next != tail){
           mid = mid->next;
           temp = temp->next->next;    
       }
       
       TreeNode *root = new TreeNode(mid->val);
       root->left = sortedListToBST(head,mid);
       root->right = sortedListToBST(mid->next,tail);
       return root;
    }
    
};

python代码

class Solution:
    def sortedListToBST(self, head):
        """
        :type head: ListNode
        :rtype: TreeNode
        """
        if not head:
            return None
        
        slow = head
        fast = head
        prev = None
        
        while fast and fast.next:
            prev = slow
            slow = slow.next
            fast = fast.next.next
            
        if prev:
            prev.next = None
        else:
            head = None
        
        root = TreeNode(slow.val)
        root.right = self.sortedListToBST(slow.next)
        root.left = self.sortedListToBST(head)
        
        return root

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值