LeetCode 785. Is Graph Bipartite?

维护一个一维数组color[],记录每个点的颜色。创建时的默认值0代表尚未被涂色,1代表红色,-1代表蓝色。最外圈的for循环每一次代表一次BFS。如果这是一个连通图(Connected Graph),那么只循环1次就能完成给所有点上色。如果这是一个非连通图(Disconnected Graph),则循环次数等于connected component的个数。在每个点加入队列时给其上色。在出队时,逐个检查他的邻居,如果尚未被涂色则涂上相反的颜色并加入队列;如果已被涂色且与当前颜色相同,则返回false。https://www.tutorialspoint.com/connected-vs-disconnected-graphs
代码如下:

class Solution {
    public boolean isBipartite(int[][] graph) {
        int length = graph.length;
        int[] color = new int[length];
        // If it is a connected graph, we will only iterate 1 round.
        // If it is a diconnected graph, we have to iterate at least 2 rounds.
        for(int i = 0; i < length; i++){
            // Check whether this node has been visited previously.
            // This step is designed for a disconnected graph.
            if(color[i] != 0){
                continue;
            }
            Queue<Integer> queue = new LinkedList<>();
            queue.offer(i);
            color[i] = 1;
            while(!queue.isEmpty()){
                int curr = queue.poll();
                for(int next: graph[curr]){
                    if(color[next] == 0){
                        color[next] = -color[curr];
                        queue.offer(next);
                    }else if(color[next] == color[curr]){
                        return false;
                    }
                }
            }
        }
        return true;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值