《统计学习方法》第九章总结

本文介绍了EM算法的基本概念,包括其作为迭代算法的工作原理——E步(求期望)与M步(求极大)。此外,还探讨了EM算法在高斯混合模型参数估计中的重要应用,并提及其可以被视为F函数的极大-极大算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EM算法是一种迭代算法,分为两步:E步(求期望)M步(求极大)所以这一算法也称为期望极大算法


EM算法的一个重要应用就是高斯混合模型的参数估计


EM算法还可以解释为F函数的极大-极大算法,F函数的性质有:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值