MySQL-视图_触发器_事务_存储过程_函数_流程控制_索引原理

MySQL

1. 视图

1. 视图介绍

1. 视图是一个虚拟表(非真实存在),其本质是: 根据SQL语句获取动态的数据集,并为其命名
2. 用户使用时只需使用 '名称' 即可获取结果集,可以将该结果集当做表来使用
3. 修改视图记录,修改的是原始表

2. 创建视图

# emp 数据表 select * from emp;
+----+------------+--------+------+--------+
| id | name       | sex    | age  | dep_id |
+----+------------+--------+------+--------+
|  1 | EGON       | male   |   18 |    200 |
|  2 | alex       | female |   48 |    201 |
|  3 | wupeiqi    | male   |   38 |    201 |
|  4 | yuanhao    | female |   28 |    202 |
|  5 | liwenzhou  | male   |   18 |    200 |
|  6 | jingliyang | female |   18 |    204 |
|  7 | lili       | female |   48 |   NULL |
+----+------------+--------+------+--------+

# dep 数据表 select * from dep;
+-----+-----------------+
|  id |     name        |
+-----+-----------------+
| 200 |     技术         |
| 201 |     人力资源      |
| 202 |     销售         |
| 203 |     运营         |
+-----+-----------------+

# emp2dep 数据表 select * from emp2dep;
+----+-----------+--------+------+--------+--------------+
| id | name      | sex    | age  | dep_id | dep_name     |
+----+-----------+--------+------+--------+--------------+
|  1 | EGON      | male   |   18 |    200 | 技术         |
|  2 | alex      | female |   48 |    201 | 人力资源     |
|  3 | wupeiqi   | male   |   38 |    201 | 人力资源     |
|  4 | yuanhao   | female |   28 |    202 | 销售         |
|  5 | liwenzhou | male   |   18 |    200 | 技术         |
+----+-----------+--------+------+--------+--------------+

# 内连接
select * from emp inner join dep on emp.dep_id = dep.id;

# 创建视图语法: create view 视图名称 as sql语句
create view emp2dep as 
	select emp.*,dep.name as dep_name from emp inner join dep on emp.dep_id = dep.id;
   
# 修改视图记录
update emp2dep set name = 'EGON' where id = 1;

# 修改视图
alter view emp2dep as sql语句;

# 删除视图
drop view emp2dep;

2. 触发器

1. 创建触发器

# 使用触发器可以定制用户对表进行 增、删、改 操作时前后的行为,注意:没有查询
# before: 操作表之前的行为  after: 操作表之后的行为
# 注意:NEW 表示即将插入的数据行,OLD 表示即将删除的数据行
# 触发器无法被用户直接调用,而是由于对表的【增/删/改】操作被动引发的

# 增 => insert 
create trigger tri_before/after_insert_t1 before/after insert on t1 for each row
begin
	sql语句;
end    

# 删 => delete
create trigger tri_before/after_delete_t1 before/after delete on t1 for each row
begin
	sql语句;
end 

# 改 => update
create trigger tri_before/after_update_t1 before/after update on t1 for each row
begin
	sql语句;
end 

# delimiter + 符号 => 定义结尾符号 => delimiter $$ 把sql语句结尾的分号替换为 $$ (符号自定)
delimiter //
create trigger tri_before_insert_t1 before insert on t1 for each row
begin
    insert into t2 values(NEW.name);
end //

delimiter ;

# 练习
CREATE TABLE cmd (
    id INT PRIMARY KEY auto_increment,
    USER CHAR (32),
    priv CHAR (10),
    cmd CHAR (64),
    sub_time datetime, # 提交时间
    success enum ('yes', 'no') # 0代表执行失败
);

CREATE TABLE errlog (
    id INT PRIMARY KEY auto_increment,
    err_cmd CHAR (64),
    err_time datetime
);

delimiter $$
create trigger tri_after_insert_cmd after insert on cmd for each row
begin
    if NEW.success = 'no' then
        insert into errlog(err_cmd,err_time) values(NEW.cmd,NEW.sub_time);
    end if;
end $$
delimiter ;

insert into cmd(user,priv,cmd,sub_time,success) values
    ('egon','0755','ls -l /etc',NOW(),'yes'),
    ('egon','0755','cat /etc/passwd',NOW(),'no'),
    ('egon','0755','useradd xxx',NOW(),'no'),
    ('egon','0755','ps aux',NOW(),'yes');

# 删除触发器    
drop trigger tri_after_insert_cmd ;

3. 事务

1、事务概念:
	数据库事务是指作为单个逻辑工作单元执行的一系列操作(SQL语句)。这些操作要么全部执行,要么全部不执行
2、为什么需要事务
	经典的银行转账行为,A账户转给B账户10元,数据库操作需要两步
    第一步A账户减10元,第二步B账户加10元,如果没有事务并且在两步中间发生异常,就会导致A的账户少了10元,但B的账户没有变化,如果不能保证这两步操作统一,银行的转账业务也没法进行展开了
	事务管理是每个数据库(oracle、mysql、db等)都必须实现的
3、事务特性(4种):
	原子性 (atomicity)  : 强调事务的不可分割
	一致性 (consistency): 事务的执行的前后数据的完整性保持一致
	隔离性 (isolation)  : 一个事务执行的过程中,不应该受到其他事务的干扰
	持久性 (durability) : 事务一旦结束,数据就持久到数据库
4、事务运行模式(3种)
	自动提交事务:默认事务管理模式。如果一个语句成功地完成,则提交该语句;如果遇到错误,则回滚该语句
	显式事务:以BEGIN TRANSACTION显式开始,以 COMMIT 或 ROLLBACK 显式结束
	隐性事务:当连接以此模式进行操作时,sql将在提交或回滚当前事务后自动启动新事务。无须描述事务的开始,只需提交或回滚每个事务。它生成连续的事务链
5、总结
	事务用于将某些操作的多个SQL作为原子性操作,一旦有某一个出现错误,即可回滚到原来的状态,从而保证数据库数据完整性
    
# 回滚     rollback;
# 提交数据  commit;

4. 存储过程

1. 存储过程介绍

# 存储过程
 	包含一系列可执行的 sql 语句,存储过程存放于 MySQL 中,通过调用它的名字可以执行其内部的 sql 语句

# 存储过程的优点
	1. 用于替代程序写的SQL语句,实现程序与sql解耦
	2. 基于网络传输,传别名的数据量小,而直接传sql数据量大

# 存储过程的缺点
	程序员扩展功能不方便
    
# 程序与数据库结合使用的三种方式
#方式一:
    MySQL:存储过程
    程序:调用存储过程

#方式二:
    MySQL:
    程序:纯SQL语句

#方式三:
    MySQL:
    程序:类和对象,即ORM(本质还是纯SQL语句)
    ORM: object relational Mapping 对象关系映射

2. 创建存储过程

# 1. 创建无参存储过程
delimiter $$
create procedure p1()
begin
    select * from emp;
end $$

delimiter ;

# 在mysql中调用
call p1();

# 在python中基于pymysql调用
cursor.callproc('p1') 
print(cursor.fetchall())

# 2. 创建有参存储过程
'''
in        仅用于传入参数使用
out       仅用于返回值使用
inout     既可以传入又可以当作返回值
'''
# in 和 out
delimiter $$
create procedure p2(
    in n int,
    out res int
)
begin
    select * from emp where id > n;
    set res=1;
end $$

delimiter ;

# 在mysql中调用
set @res=0; # 0代表假(执行失败),1代表真(执行成功)
call p2(3,@res);
select @res;

# 在python中基于pymysql调用
cursor.callproc('p2',(3,0)) # 0相当于set @res=0
print(cursor.fetchall())    # 查询select的查询结果

cursor.execute('select @_p2_0,@_p2_1;') # @p2_0代表第一个参数,@p2_1代表第二个参数,即返回值
print(cursor.fetchall())

# inout
delimiter //
create procedure p3(
    inout n1 int
)
BEGIN
    select * from blog where id > n1;
    set n1 = 1;
END //
delimiter ;

# 在mysql中调用
set @x=3;
call p3(@x);
select @x;

# 在python中基于pymysql调用
cursor.callproc('p3',(3,))
print(cursor.fetchall()) # 查询select的查询结果

cursor.execute('select @_p3_0;') 
print(cursor.fetchall())

3. 执行存储过程

-- 无参数
call proc_name()

-- 有参数,全in
call proc_name(1,2)

-- 有参数,有in,out,inout
set @t1=0;
set @t2=3;
call proc_name(1,2,@t1,@t2)

# 执行存储过程
# !/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql

conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
# 执行存储过程
cursor.callproc('p1', args=(1, 22, 3, 4))
# 获取执行完存储的参数
cursor.execute("select @_p1_0,@_p1_1,@_p1_2,@_p1_3")
result = cursor.fetchall()

conn.commit()
cursor.close()
conn.close()

print(result)

# 删除存储过程
drop procedure proc_name;

4. date_format 函数

# date_format 格式化时间

# 案例
CREATE TABLE blog (
    id INT PRIMARY KEY auto_increment,
    NAME CHAR (32),
    sub_time datetime
);

INSERT INTO blog (NAME, sub_time)
VALUES
    ('第1篇','2015-03-01 11:31:21'),
    ('第2篇','2015-03-11 16:31:21'),
    ('第3篇','2016-07-01 10:21:31'),
    ('第4篇','2016-07-22 09:23:21'),
    ('第5篇','2016-07-23 10:11:11'),
    ('第6篇','2016-07-25 11:21:31'),
    ('第7篇','2017-03-01 15:33:21'),
    ('第8篇','2017-03-01 17:32:21'),
    ('第9篇','2017-03-01 18:31:21');

select date_format(sub_time,"%Y-%m") as t,count(id) from blog group by t;

# 查询结果
+---------+-----------+
| t       | count(id) |
+---------+-----------+
| 2015-03 |         2 |
| 2016-07 |         4 |
| 2017-03 |         3 |
+---------+-----------+

5. 索引原理

1. 索引介绍

# 1. 使用索引的目的
	为了优化查询速度,但是一张表一旦创建了索引,会降低写入速度
    
# 2. 索引概念
	索引是 mysql 数据库的一种数据结构,在 mysql 里称之为 key()
    索引是存储引擎用于快速找到记录的一种数据结构
    在mysql中使用最广泛的数据引擎是 InnoDB 引擎,它里面用的是 B+ 树索引

2. 索引原理 B+树

# 1. 索引目的及本质	
    索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等
    
    通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据
    
# 2. 磁盘IO与预读
	磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计
    
    考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助
    
# 3. 二叉查找树
# 概念
	每个节点左边节点的值都小于该节点,右边节点的值都大于该节点,没有值相等的节点,最顶端的节点称为根节点 
# 查找过程
	若根结点的值等于查找的值,成功

	否则,若小于根结点的值,递归查左子树(也就是根节点左边的所有节点形成的树)

	若大于根结点的值,递归查右子树(也就是根节点右边所有节点形成的树)
    
# 4. 平衡二叉树
# 概念
	平衡二叉树首先也是一个二叉树,需要满足二叉树的所有条件,然后有所改进,规定了左右子树的高度差不能超过1,如果插入数据导致高度差超过了1则自动进行调整,回复到平衡状态。这也是平衡二叉树名字的由来
    平衡二叉树查找效率要高于二叉树
    
# 5. B树
# 由来
	由前面的推导我们可以看出要想查找,比较的次数最少,必须想办法降低树形结构的高度,不管是二叉树还是平衡二叉树,每个节点最多只能有两个子节点,这就注定了它的高度受限于子节点的个数,于是B树横空出世
    B树降低了磁盘的IO
# 概念
	B树中的每个节点根据实际情况可以包含大量的键值,数据和指针,一个3阶的B树:每点占用一个磁盘块的磁盘空间,一个节点上有两个升序排序的键值和三个指向子树根节点的指针,指针存储的是子节点所在磁盘块的地址。两个键值划分成的三个范围域对应三个指针指向的子树的数据的范围域
    
    以根节点为例,键值为1735,P1指针指向的子树的数据范围为小于17,P2指针指向的子树的数据范围为17~35,P3指针指向的子树的数据范围为大于35
    
模拟查找关键字29的过程:
    根据根节点找到磁盘块1,读入内存。【磁盘I/O操作第1次】
    比较关键字29在区间(17,35),找到磁盘块1的指针P2
    根据P2指针找到磁盘块3,读入内存。【磁盘I/O操作第2次】
    比较关键字29在区间(26,30),找到磁盘块3的指针P2
    根据P2指针找到磁盘块8,读入内存。【磁盘I/O操作第3次】
    在磁盘块8中的关键字列表中找到关键字29

    分析上面过程,发现需要3次磁盘I/O操作,和3次内存查找操作。由于内存中的键值是一个有序表结构,可以利用二分法查找提高效率。而3次磁盘I/O操作是影响整个B树查找效率的决定因素
    
# 6. B+树
# 由来
	在B树中每个节点的内容由三部分组成:键值,指针,数据,而磁盘块的容量是有限的,并不是每次读取磁盘块都会取出里面的数据,只是在最后一次读取的时候才会取出里面的数据,能不能将数据只存储在叶子节点里面,非叶子节点只存储键值和指针,这样就能最大化的利用磁盘块空间,一个磁盘块也就能存更多的东西了,于是,B+树就应运而生

# B+树与B树的区别:
	1. 非叶子节点只存储键值和指针。
	2. 所有叶子节点之间都有一个链指针。
	3. 数据记录都存放在叶子节点中。    
    
# B+树的特点
	1. 在B+树中因为叶子节点的键值是按顺序排列的所以进行键值的范围查找效率非常高。
	2. 在B+树中由于一个节点存储了更多的键值和指针,所以同样多的内容可以降低树的高度,减少磁盘io次数,从        而提高效率
    3. 索引字段要尽量的小
    4. 索引的最左匹配特性  

B+树
在这里插入图片描述

3. 索引类型

数据库的索引分为聚集索引和非聚集索引(辅助索引)

1.聚集索引与辅助索引相同的是:
	不管是聚集索引还是辅助索引,其内部都是B+树的形式,即高度是平衡的,叶子结点存放着所有的数据。
2.聚集索引与辅助索引不同的是:
	叶子结点存放的是否是一整行的信息
1. 聚集索引
# 介绍	
    innoDb存储引擎中的聚集索引表中的数据按主键的顺序存放,它实际上就是按主键构建的一个B+树,叶子节点存放的是数据行记录。所以数据库中的数据实际上是索引的一部分。由于实际的数据页只能按照一个顺序存放,所以每张表聚集索引只能有一个
    如果未定义主键,MySQL取第一个唯一索引(unique)而且只含非空列(NOT NULL)作为主键,InnoDB使用它作为聚集索引
	如果没有这样的列,InnoDB就自己产生一个这样的ID值,它有六个字节,而且是隐藏的,使其作为聚集索引
    
# 优点
	1.对主键的排序查找和范围查找速度非常快,叶子节点的数据就是用户所要查询的数据。如用户需要查找一张表,查询最后的10位用户信息,由于B+树索引是双向链表,所以用户可以快速找到最后一个数据页,并取出10条记录
    
mysql> desc s1; # 最开始没有主键
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | NO   |     | NULL    |       |
| name   | varchar(20) | YES  |     | NULL    |       |
| gender | char(6)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  |     | NULL    |       |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

mysql> explain select * from s1 order by id desc limit 10; # Using filesort,需要二次排序
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows    | filtered | Extra          |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
|  1 | SIMPLE      | s1    | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 2633472 |   100.00 | Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
1 row in set, 1 warning (0.11 sec)

mysql> alter table s1 add primary key(id); # 添加主键
Query OK, 0 rows affected (13.37 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> explain select * from s1 order by id desc limit 10; 
# 基于主键的聚集索引在创建完毕后就已经完成了排序,无需二次排序
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
|  1 | SIMPLE      | s1    | NULL       | index | NULL          | PRIMARY | 4       | NULL |   10 |   100.00 | NULL  |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
1 row in set, 1 warning (0.04 sec)
    
    2.范围查询(range query),即如果要查找主键某一范围内的数据,通过叶子节点的上层中间节点就可以得到页的范围,之后直接读取数据页即可
    
mysql> alter table s1 drop primary key;
Query OK, 2699998 rows affected (24.23 sec)
Records: 2699998  Duplicates: 0  Warnings: 0

mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field  | Type        | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id     | int(11)     | NO   |     | NULL    |       |
| name   | varchar(20) | YES  |     | NULL    |       |
| gender | char(6)     | YES  |     | NULL    |       |
| email  | varchar(50) | YES  |     | NULL    |       |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.12 sec)

mysql> explain select * from s1 where id > 1 and id < 1000000; 
# 没有聚集索引,预估需要检索的rows数如下
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows    | filtered | Extra       |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
|  1 | SIMPLE      | s1    | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 2690100 |    11.11 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> alter table s1 add primary key(id);
Query OK, 0 rows affected (16.25 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> explain select * from s1 where id > 1 and id < 1000000; 
# 有聚集索引,预估需要检索的rows数如下
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref  | rows    | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
|  1 | SIMPLE      | s1    | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL | 1343355 |   100.00 | Using where |
+----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.09 sec)    
2. 辅助索引
# 介绍	
	1.表中除了聚集索引外其他索引都是辅助索引(Secondary Index,也称为非聚集索引),与聚集索引的区别是:辅助索引的叶子节点不包含行记录的全部数据。

	2.叶子节点除了包含键值以外,每个叶子节点中的索引行中还包含一个书签(bookmark)。该书签用来告诉InnoDB存储引擎去哪里可以找到与索引相对应的行数据。

	3.由于InnoDB存储引擎是索引组织表,因此InnoDB存储引擎的辅助索引的书签就是相应行数据的聚集索引键
    
    4.辅助索引的叶子节点中存放的是键值和主键值,所以通过非聚集索引需要先查找到主键值然后通过聚集索引查询到具体的数据,因此非聚集索引的效率要低于聚集索引。非聚集索引并不会影响到数据的存储顺序,所以非聚集索引可以存在多个 
    
    5.辅助索引的存在并不影响数据在聚集索引中的组织,因此每张表上可以有多个辅助索引,但只能有一个聚集索引。当通过辅助索引来寻找数据时,InnoDB存储引擎会遍历辅助索引并通过叶子级别的指针获得指向主键索引的主键,然后再通过主键索引来找到一个完整的行记录

4. MySQL索引管理

1. 功能
1. 索引的功能就是加速查找
2. mysql中的primary key,unique,联合唯一也都是索引,这些索引除了加速查找以外,还有约束的功能
2. MySQL常用的索引
普通索引INDEX:
	-加速查找

唯一索引:
    -主键索引PRIMARY KEY:加速查找+约束(不为空、不能重复)
    -唯一索引UNIQUE: 加速查找+约束(不能重复)

联合索引:
    -PRIMARY KEY(id,name): 联合主键索引
    -UNIQUE(id,name): 联合唯一索引
    -INDEX(id,name): 联合普通索引
        
# 举例说明
商场做一个会员卡的系统
这个系统有一个会员表
有下列字段:
会员编号 INT
会员姓名 VARCHAR(10)
会员身份证号码 VARCHAR(18)
会员电话 VARCHAR(10)
会员住址 VARCHAR(50)
会员备注信息 TEXT

那么这个 会员编号,作为主键,使用 PRIMARY
会员姓名 如果要建索引的话,那么就是普通的 INDEX
会员身份证号码 如果要建索引的话,那么可以选择 UNIQUE (唯一的,不允许重复)

# 除此之外还有全文索引,即FULLTEXT
会员备注信息 , 如果需要建索引的话,可以选择全文搜索。
用于搜索很长一篇文章的时候,效果最好。
用在比较短的文本,如果就一两行字的,普通的 INDEX 也可以。
但其实对于全文搜索,我们并不会使用MySQL自带的该索引,而是会选择第三方软件如Sphinx,专门来做全文搜索
3. 索引的两大类型 hash btree
# 创建索引的时候,可为其指定索引类型,分两类
hash类型的索引:查询单条快,范围查询慢
btree类型的索引:b+树,层数越多,数据量指数级增长(innodb默认支持)

# 不同的存储引擎支持的索引类型也不一样
InnoDB  支持事务,  支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM  不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory  不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB     支持事务,  支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;
4. 创建/删除索引
# 方式一
create table t1(
    id int,
    name char,
    age int,
    sex enum('male','female'),
    unique key uni_id(id),
    index ix_name(name)  # index没有key
);

# 方式二
create index ix_age on t1(age);

# 方式三
alter table t1 add index ix_sex(sex);

# 删除
drop index ix_sex on t1

5. 测试索引

1. 准备数据
# 1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);

# 2. 创建存储过程,实现批量插入记录
delimiter $$ # 声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
    declare i int default 1;
    while(i<3000000)do
        insert into s1 values(i,'egon','male',concat('egon',i,'@oldboy'));
        set i=i+1;
    end while;
END$$ #$$结束
delimiter ; # 重新声明分号为结束符号

# 3. 查看存储过程
show create procedure auto_insert1\G 

# 4. 调用存储过程
call auto_insert1();
2. 在没有索引的前提下测试查询速度
# 无索引
'''
	mysql根本就不知道到底是否存在id等于333333333的记录,只能把数据表从头到尾扫描一遍
	此时有多少个磁盘块就需要进行多少IO操作,所以查询速度很慢
'''	
mysql> select * from s1 where id=333333333;
Empty set (0.33 sec)
3. 创建索引 查询测试
# 1. 在表中已经存在大量数据的前提下,为某个字段段建立索引,建立速度会很慢
create index a on s1(id); # 5.30sec

# 2. 在索引建立完毕后,以该字段为查询条件时,查询速度提升明显
select * from s1 where id = 3333333333; # 0.000000015 sec

# PS:
'''
1. mysql先去索引表里根据b+树的搜索原理很快搜索到id等于333333333的记录不存在,
   IO大大降低,因而速度明显提升
2. 我们可以去mysql的data目录下找到该表,可以看到占用的硬盘空间多了
'''
4. 总结
# 1. 一定是为搜索条件的字段创建索引
	select * from s1 where id = 333;
    就需要为id加上索引

# 2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,建完后查询速度加快
	create index idx on s1(id);
    会扫描表中所有的数据,然后以id为数据项,创建索引结构,存放于硬盘的表中
	建完以后,再查询就会很快了

# 3. 需要注意的是:
	innodb表的索引会存放于s1.ibd文件中
    myisam表的索引则会有单独的索引文件table1.MYI

	MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址
    innodb中,表数据文件本身就是按照B+Tree(BTree即Balance True)组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此innodb表数据文件本身就是主索引
	因为inndob的数据文件要按照主键聚集,所以innodb要求表必须要有主键(Myisam可以没有),如果没有事先定义,则mysql系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,mysql会自动为innodb表生成一个隐含字段作为主键,这字段的长度为6个字节,类型为长整型

6. 正确使用索引

1. 索引未命中
'''
并不是说我们创建了索引就一定会加快查询速度,若想利用索引达到预想的提高查询速度的效果,我们在添加索引时,必须遵循以下问题

范围问题,或者说条件不明确,条件中出现这些符号或关键字:>、>=、<、<=、!= 、between...and...、like
'''

# 设置id字段为索引
create index a on s1(id);
# 1. 等于号 = 
select count(*) from s1 where id = 1000; # 明确指定id=1000,在索引树中可以快速找到 0.00sec

# 2. 大于号 >
select count(*) from s1 where id > 1000;
'''
没有明确指定查找id,而是指定了一个范围,这个范围包含所有大于1000的id,mysql会拿着大于1000的id一个个去搜索,如果范围很大,查询跟全表扫描没多大区别 0.28sec
'''

# 3. 大于号 > 小于号 <
select count(*) from s1 where id > 1000 and id < 2000; # 范围小,查询速度仍然很快 0.00sec

# 4. 不等于 !=
select count(*) from s1 where id != 1000; # 不等于1000的id,是一个很大的范围 0.28sec

# 5. between ... and ...
select count(*) from s1 where id between 1 and 300000; # 范围大,查询速度很慢 0.20sec
select count(*) from s1 where id between 1 and 30; # 范围小,查询速度很快 0.00sec

# 6. like
# 没有给email字段加索引
select count(*) from s1 where email = 'xxxx'; # 查询速度慢 0.30sec
# 给email字段加索引
create index d on s1(email);
select count(*) from s1 where email = 'xxxx'; # 查询速度加快 0.00sec
# like 指定明确的值
select count(*) from s1 where email like 'xxxx'; # 0.00sec
# like 匹配的字符末尾有 %
select count(*) from s1 where email like 'xxxx%'; # 0.00sec
# like 匹配的字符开头有 %
select count(*) from s1 where email like '%xxxx'; # 0.39sec

'''
尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例
比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0
'''

# 删除表中创建的索引
drop index a on s1;
drop index d on s1;

# name字段没有设置成索引之前查询 (速度很慢)
select count(*) from s1 where name = 'xxxx'; # 0.29sec
# 设置name字段为索引再查询 (速度很快)
create index b on s1(name);
select count(*) from s1 where name = 'xxxx'; # 0.00sec
drop index b on s1;
'''
= 和 in 可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式

索引列不能参与计算,保持列“干净”
比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大
所以语句应该写成create_time = unix_timestamp(’2014-05-29’)
'''

# 设置id字段为索引
create index a on s1(id);
select count(*) from s1 where id = 3000; # 0.00sec
# 索引字段id,参与了计算,无法拿到一个明确的值去索引树中查找,每次都得临时计算一下,查询速度变慢
select count(*) from s1 where id*3 = 3000; # 0.27sec

# and or
# 1、and与or的逻辑
    条件1 and 条件2:所有条件都成立才算成立,但凡要有一个条件不成立则最终结果不成立
    条件1 or 条件2:只要有一个条件成立则最终结果就成立

# 2、and的工作原理
    条件:
        a = 10 and b = 'xxx' and c > 3 and d =4
    索引:
        制作联合索引(d,a,b,c)
    工作原理:
        对于连续多个and:mysql会按照联合索引,从左到右的顺序找一个区分度高的索引字段
        (这样便可以快速锁定很小的范围),加速查询,即按照d—>a->b->c的顺序

# 3、or的工作原理
    条件:
        a = 10 or b = 'xxx' or c > 3 or d =4
    索引:
        制作联合索引(d,a,b,c)
        
    工作原理:
        对于连续多个or:mysql会按照条件的顺序,从左到右依次判断,即a->b->c->d

# 4. 特点        
	在左边条件成立但是索引字段的区分度低的情况下(name与gender均属于这种情况),会依次往右找到一个区分度高的索引字段,加速查询 
    
# 5. 案例
# 创建索引
create index a on s1(id);
create index b on s1(name);
create index c on s1(gender);
# 查询耗时 1.61sec
select count(*) from s1 where name='egon' and gender='male' and id>333 and email='xxx';
'''
代码分析:
	前三个条件都成立,但是都无法利用索引达到加速的目的,条件一和条件二都是因为区分度低,而条件三是因为使用
	了一个很大的范围,条件四字段email区分度高,但是未加索引,索引查询速度很慢
'''

# 为email字段创建索引
# 查询耗时 0.20sec => 查询速度明显提升
create index d on s1(email);
select count(*) from s1 where name='egon' and gender='male' and id>333 and email='xxx';
'''
代码分析:
	在条件为name='egon' and gender='male' and id>333 and email='xxx'的情况下,我们完全没必要为前三个条件的字段加索引,因为只能用上email字段的索引,前三个字段的索引反而会降低我们的查询效率
'''

# 无用索引会降低查询速度,需要删除,保留区分度高的索引email
drop index a on s1;
drop index b on s1;
drop index c on s1;
# 再次查询 查询耗时 0.00sec => 查询速度再次提升
select count(*) from s1 where name='egon' and gender='male' and id>333 and email='xxx';

'''
最左前缀匹配原则
	对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配(指的是范围大了,有索引速度也慢)
	比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整
'''

# 建立索引时未将条件中关于范围比较的字段放在后面,查询速度很慢
create index xxx on s1(id,name,gender,email);
# 查询耗时 0.47sec
select count(*) from s1 where name='egon' and gender='male' and id>333 and email='xxx';
drop index xxx on s1;

# 建立索引时将条件中关于范围比较的字段放在后面,查询速度很快
create index xxx on s1(name,gender,email,id);
# 查询耗时 0.00sec
select count(*) from s1 where name='egon' and gender='male' and id>333 and email='xxx';

# 6. 其他情况
- 使用函数
    select * from tb1 where reverse(email) = 'egon';
            
- 类型不一致
    如果列是字符串类型,传入条件是必须用引号引起来,不然...
    select * from tb1 where email = 999; # 999 => '999' => 正确写法
    
# 排序条件为索引,则select字段必须也是索引字段,否则无法命中
- order by
    	select name from s1 order by email desc;
    当根据索引排序时候,select查询的字段如果不是索引,则速度仍然很慢
    	select email from s1 order by email desc;
    特别的:如果对主键排序,则还是速度很快:
        select * from tb1 order by nid desc;
 
- 组合索引最左前缀
    如果组合索引为:(name,email)
    name and email       -- 命中索引
    name                 -- 命中索引
    email                -- 未命中索引

- count(1)或count()代替count(*)在mysql中没有差别

- create index xxxx on tb(title(19)) # text类型,必须指定长度
2. 其他注意事项
- 避免使用select *
- count(1)或count() 代替 count(*)
- 创建表时尽量用 varchar 代替 char
- 表的字段顺序固定长度的字段优先
- 组合索引代替多个单列索引(经常使用多个条件查询时)
- 尽量使用短索引
- 使用连接(JOIN)来代替子查询(Sub-Queries)
- 连表时注意条件类型需一致
- 索引散列值(重复少)不适合建索引,例:性别不适合

7. 联合索引与覆盖索引

1. 联合索引
# 联合索引介绍
	联合索引是指对表上的多个列合起来做一个索引
    联合索引的创建方法与单个索引的创建方法一样,不同之处在仅在于有多个索引列
    从本质上来说,联合索引就是一棵B+树,不同的是联合索引的键值得数量不是1,而是>=2
    联合索引的第二个好处是在第一个键相同的情况下,已经对第二个键进行了排序处理
    
mysql> create table t(
    -> a int,
    -> b int,
    -> primary key(a),
    -> key idx_a_b(a,b)
    -> );
Query OK, 0 rows affected (0.11 sec)

# 对于联合索引(a,b),下述语句可以直接使用该索引,无需二次排序
select ... from table where a=xxx order by b;

# 然后对于联合索引(a,b,c)来首,下列语句同样可以直接通过索引得到结果
select ... from table where a=xxx order by b;
select ... from table where a=xxx and b=xxx order by c;

# 但是对于联合索引(a,b,c),下列语句不能通过索引直接得到结果,还需要自己执行一次filesort操作,因为索引     (a,c)并未排序
select ... from table where a=xxx order by c;
2. 覆盖索引
# 覆盖索引介绍
	InnoDB存储引擎支持覆盖索引(covering index,或称索引覆盖)
    即从辅助索引中就可以得到查询记录,而不需要查询聚集索引中的记录

	使用覆盖索引的好处:
    辅助索引不包含整行记录的所有信息,故其大小要远小于聚集索引,因此可以减少大量的IO操作
    覆盖索引的另外一个好处是对某些统计问题而言的
    
select age from s1 where id=123 and name = 'egon';
# id字段有索引,但是name字段没有索引,该sql命中了索引,但未覆盖,需要去聚集索引中再查找详细信息。
# 最牛逼的情况是,索引字段覆盖了所有,那全程通过索引来加速查询以及获取结果就ok了
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.21 sec)

mysql> explain select name from s1 where id=1000; # 没有任何索引
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ALL | NULL | NULL | NULL | NULL | 2688336 | 10.00 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> create index idx_id on s1(id); # 创建索引
Query OK, 0 rows affected (4.16 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> explain select name from s1 where id=1000; 
# 命中辅助索引,但是未覆盖索引,还需要从聚集索引中查找name
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+
| 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.08 sec)

mysql> explain select id from s1 where id=1000; 
# 在辅助索引中就找到了全部信息,Using index代表覆盖索引
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | Using index |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
1 row in set, 1 warning (0.03 sec)  

# 案例
'''
对于(a,b)形式的联合索引,一般是不可以选择b中所谓的查询条件。但如果是统计操作,并且是覆盖索引,则优化器还是会选择使用该索引,如下
'''
# 联合索引userid_2(userid,buy_date),一般情况,我们按照buy_date是无法使用该索引的,但特殊情况下:查询语句是统计操作,且是覆盖索引,则按照buy_date当做查询条件时,也可以使用该联合索引
mysql> explain select count(*) from buy_log where buy_date >= '2011-01-01' and buy_date < '2011-02-01';
+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+
| id | select_type | table   | type  | possible_keys | key      | key_len | ref  | rows | Extra                    |
+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+
|  1 | SIMPLE      | buy_log | index | NULL          | userid_2 | 8       | NULL |    7 | Using where; Using index |
+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+
1 row in set (0.00 sec)

8. 查询优化神器 - explain

执行计划:让mysql预估执行操作(一般正确)
    all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
    id,email
    
    慢:
        select * from userinfo3 where name='alex'
        explain select * from userinfo3 where name='alex'
        type: ALL(全表扫描)
            select * from userinfo3 limit 1;
    快:
        select * from userinfo3 where email='alex'
        type: const(走索引)

9. 慢查询优化的基本步骤

0. 先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1. where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开	  始查起,单表每个字段分别查询,看哪个字段的区分度最高
2. explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3. order by limit 形式的sql语句让排序的表优先查
4. 了解业务方使用场景
5. 加索引时参照建索引的几大原则
6. 观察结果,不符合预期继续从0分析

10. 慢日志管理

		慢日志
            - 执行时间 > 10
            - 未命中索引
            - 日志文件路径
            
        配置:
            - 内存
                show variables like '%query%';
                show variables like '%queries%';
                set global 变量名 =- 配置文件
                mysqld --defaults-file =
                'E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini'
                
                my.conf内容:
                    slow_query_log = ON
                    slow_query_log_file = D:/....
                    
                注意:修改配置文件之后,需要重启服务
MySQL日志管理
========================================================
错误日志:   记录 MySQL 服务器启动、关闭及运行错误等信息
二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 以外的操作
查询日志:   记录查询的信息
慢查询日志: 记录执行时间超过指定时间的操作
中继日志:  备库将主库的二进制日志复制到自己的中继日志中,从而在本地进行重放
通用日志:  审计哪个账号、在哪个时段、做了哪些事件
事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等
========================================================
一、bin-log
1. 启用
# vim /etc/my.cnf
[mysqld]
log-bin[=dir\[filename]]
service mysqld restart

2. 暂停
//仅当前会话
SET SQL_LOG_BIN=0;
SET SQL_LOG_BIN=1;

3. 查看
# 查看全部:
mysqlbinlog mysql.000002

# 按时间:
mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 

# 按字节数:
mysqlbinlog mysql.000002 --start-position=260
mysqlbinlog mysql.000002 --stop-position=260
mysqlbinlog mysql.000002 --start-position=260 --stop-position=930

4. 截断bin-log(产生新的bin-log文件)
# 重启mysql服务器
mysql -uroot -p123 -e 'flush logs'

5. 删除bin-log文件
mysql -uroot -p123 -e 'reset master' 

二、查询日志
# 启用通用查询日志
# vim /etc/my.cnf
[mysqld]
log[=dir\[filename]]
service mysqld restart

三、慢查询日志
# 启用慢查询日志
# vim /etc/my.cnf
[mysqld]
log-slow-queries[=dir\[filename]]
long_query_time=n
service mysqld restart
MySQL 5.6:
slow-query-log=1
slow-query-log-file=slow.log
long_query_time=3
# 查看慢查询日志
测试:BENCHMARK(count,expr)
SELECT BENCHMARK(50000000,2*3);
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页