题目在问这样一个问题:给定一个凸多边形,找到其中的一个点,使得其到每条边的距离最小值最大,输出这个距离。
其实就是在问你,这个多边形中最大的一个内切圆有多大。
怎么做呢?如果我们事先知道一个半径R,我们是不是能验证这个R是否可行呢?
答案是肯定的,这样想:如果我们把这个多边形每条边都向内推进R,之后如果这个多边形还存在的话,就说明这个半径为R的圆肯定塞得下,因为还可以往里缩嘛。直到他们缩成一个点的时候,这个时候缩的距离就是我们要找的R了,同时这个点也肯定是我们要找的圆的圆心。
那么,我们就可以二分一下R,之后用半平面交判断一下多边形是否还在就行了。
半平面交的实现和求多边形的核一模一样,我们可以考虑这个问题是一堆半平面的交,实际上实现手段是切割已有的答案区域,得到一个更小的答案区域,这就是半平面交的实现手段。为此,我们一开始选择一个肯定要大一些的答案区域,再不断用直线去切割就可以了。
最想说一下什么呢?是“将每条边推进R”应该怎么实现。很多人绕了半天,实际上我找到一个很简单的公式:把直线表示成Ax + By + C = 0后(已考虑顺逆时针所带来的正负号问题),把直线向内推进d时,只需要写:
c += d * sqrt(a*a + b*b);
就可以了。
为什么呢?我们可以简单推导一下:
①当直线不垂直于X轴的时候,不妨假设直线向左上方移动(直线方向为右上):
有如下关系成立:
tanθ = k = - A / B
sinα = -B / sqrt( a*a + b*b)
cosα = A / sqrt(a*a + b*b)
dx = d*cosα
dy = d*sinα
新直线方程为A(x+dx) + B(y+dy) + C = 0
拆开整理,会发现分子上面有一个A² + B² ,和下面的sqrt(A² + B²) 约掉一份,得出△C = d* sqrt(A² + B²)。
②当直线垂直于X轴的时候,解析式为Ax + C = 0, 不妨假设直线向左移动(其方向是向上的),则新直线为A(x + d)+ C =0, 于是有△C = Ad = d * sqrt(a*a+b*b)。
代码是我自己的:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
struct Point
{
double x, y;
}point[150], temp[150], temp_temp[150];
int num_temp, cut_num;
int n;
double a, b, c;
void getline(Point p2, Point p1)//可以轻松证明出该结论。
{
a = p1.y - p2.y;
b = p2.x - p1.x;
c = p2.y*p1.x - p1.y*p2.x;
}
Point intersect(Point x, Point y) //获取直线ax+by+c==0 和点x和y所连直线的交点
{
double u = fabs(a*x.x + b*x.y + c);
double v = fabs(a*y.x + b*y.y + c);
Point ans;
ans.x = (x.x*v + y.x*u) / (u + v);
ans.y = (x.y*v + y.y*u) / (u + v);
return ans;
}
void cut()
{
cut_num = 0;
for (int i = 1; i <= num_temp; i++)
{
Point p = temp[i];
Point p1 = temp[i - 1];
Point p2 = temp[i + 1];
if (a*p.x + b*p.y + c <= 0)
{
temp_temp[++cut_num] = p;
}
else
{
if (a*p1.x + b*p1.y + c < 0)
{
temp_temp[++cut_num] = intersect(temp[i - 1], temp[i]);
}
if (a*p2.x + b*p2.y + c < 0)
{
temp_temp[++cut_num] = intersect(temp[i], temp[i + 1]);
}
}
}
for (int i = 1; i <= cut_num; i++)
{
temp[i] = temp_temp[i];
}
temp[cut_num + 1] = temp_temp[1];
temp[0] = temp_temp[cut_num];
num_temp = cut_num;
}
double solve()
{
double l = 0, r = 1000000;
double mid;
while (r - l >= 1e-5)
{
mid = (l + r) / 2;
for (int i = 0; i <= n + 1; i++)
{
temp[i] = point[i];
}
num_temp = n;
for (int i = 1; i <= n; i++)
{
getline(point[i], point[i + 1]);
c += mid * sqrt(a*a + b*b);
cut();
}
if (num_temp)
l = mid;
else
r = mid;
}
return r;
}
int main()
{
int t;
#ifdef glx
freopen("in.txt", "r", stdin);
#endif
while (~scanf("%d", &n)&&n)
{
for (int i = 1; i <= n; i++)
{
scanf("%lf%lf", &point[i].x, &point[i].y);
}
point[0] = point[n];
point[n + 1] = point[1];
printf("%.6lf\n", solve());
//cout << num_temp << endl;
}
return 0;
}