题目链接:http://poj.org/problem?id=3525
题意:给定一个凸多边形,求多边形中距离边界最远的点到边界的距离。
思路 : 每次将凸多边形每条边往里平移d,判断是否存在核;二分d即可。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
const double eps = 1e-10;
const int maxn = 105;
int dq[maxn], top, bot, pn, order[maxn], ln;
struct Point {
double x, y;
} p[maxn];
struct Line {
Point a, b;
double angle;
} l[maxn], tmp[maxn];
int dblcmp(double k) {
if (fabs(k) < eps) return 0;
return k > 0 ? 1 : -1;
}
double multi(Point p0, Point p1, Point p2) {
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}
bool cmp(int u, int v) {
int d = dblcmp(l[u].angle-l[v].angle);
if (!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) > 0;
return d < 0;
}
void getIntersect(Line l1, Line l2, Point& p) {
double dot1,dot2;
dot1 = multi(l2.a, l1.b, l1.a);
dot2 = multi(l1.b, l2.b, l1.a);
p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
}
bool judge(Line l0, Line l1, Line l2) {
Point p;
getIntersect(l1, l2, p);
return dblcmp(multi(p, l0.a, l0.b)) < 0;
}
void addLine(double x1, double y1, double x2, double y2) {
l[ln].a.x = x1; l[ln].a.y = y1;
l[ln].b.x = x2; l[ln].b.y = y2;
l[ln].angle = atan2(y2-y1, x2-x1);
ln++;
}
bool halfPlaneIntersection(Line l[], int n) {
int i, j;
for (i = 0; i < n; i++) order[i] = i;
sort(order, order+n, cmp);
for (i = 1, j = 0; i < n; i++)
if (dblcmp(l[order[i]].angle-l[order[j]].angle) > 0)
order[++j] = order[i];
n = j + 1;
dq[0] = order[0];
dq[1] = order[1];
bot = 0;
top = 1;
for (i = 2; i < n; i++) {
while (bot < top && judge(l[order[i]], l[dq[top-1]], l[dq[top]])) top--;
while (bot < top && judge(l[order[i]], l[dq[bot+1]], l[dq[bot]])) bot++;
dq[++top] = order[i];
}
while (bot < top && judge(l[dq[bot]], l[dq[top-1]], l[dq[top]])) top--;
while (bot < top && judge(l[dq[top]], l[dq[bot+1]], l[dq[bot]])) bot++;
if (bot + 1 >= top) return false; //当dq中少于等于两条边时,说明半平面无交集
return true;
}
double getDis(Point a, Point b) {
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void changePolygon(double h) {
double len, dx, dy;
for (int i = 0; i < ln; i++) {
len = getDis(l[i].a, l[i].b);
dx = (l[i].a.y - l[i].b.y) / len * h;
dy = (l[i].b.x - l[i].a.x) / len * h;
tmp[i].a.x = l[i].a.x + dx;
tmp[i].a.y = l[i].a.y + dy;
tmp[i].b.x = l[i].b.x + dx;
tmp[i].b.y = l[i].b.y + dy;
tmp[i].angle = l[i].angle;
}
}
double BSearch() {
double l = 0, r = 20000, mid;
while (l + eps < r) {
mid = (l + r) / 2;
changePolygon(mid);
if (halfPlaneIntersection(tmp, ln))
l = mid;
else r = mid;
}
return l;
}
int main()
{
int i;
while (scanf ("%d", &pn) && pn) {
for (i = 0; i < pn; i++)
scanf ("%lf%lf", &p[i].x, &p[i].y);
for (i = ln = 0; i < pn-1; i++)
addLine(p[i].x, p[i].y, p[i+1].x, p[i+1].y);
addLine(p[i].x, p[i].y, p[0].x, p[0].y);
printf ("%.6lf\n", BSearch());
}
return 0;
}