【leetcode-数学】阶乘后的零/数字1的个数/完美数

阶乘后的零

给定一个整数 n,返回 n! 结果尾数中零的数量。

示例 1:
输入: 3
输出: 0
解释: 3! = 6, 尾数中没有零。

示例 2:
输入: 5
输出: 1
解释: 5! = 120, 尾数中有 1 个零.

示例 3:
输入: 13
输出: 2
解释: 13! = 6227020800, 尾数中有 2 个零.

计算约数为5的数字个数

class Solution {
    public int trailingZeroes(int n) {
        int count = 0;
        for (int i = 5; i <= n; i+=5) {
            int num = i;
            while (num % 5 == 0) {
                count++;
                num /= 5;
            }
        }
        return count;
    }
}

高效的计算因子5

class Solution {
    public int trailingZeroes(int n) {
        int count = 0;
        while (n > 0) {
            count += n / 5;
            n /= 5;
        }
        return count;
    }
}

数字1的个数

给定一个整数 n,计算所有小于等于 n 的非负整数中数字 1 出现的个数。

示例 1:
输入:n = 13
输出:6

示例 2:
输入:n = 0
输出:0

数学归纳

在这里插入图片描述

class Solution {
    public int countDigitOne(int n) {
        int count = 0;
        for (int k = 1; k <= n; k *= 10) {
            int high = n / k;
            int cur = high % 10;
            high /= 10;
            int low = n % k;
            count += high * k;
            System.out.println(low + " " + k);
            if (cur > 1)
                count += k;
            else if (cur == 1)
                count += low + 1;
            if (high == 0)
                break;
        }
        return count;
    }
}

简化

class Solution {
    public int countDigitOne(int n) {
        int count = 0;
        for (long k = 1; k <= n; k *= 10) {
            long r = n / k, m = n % k;
            count += (r + 8) / 10 * k + (r % 10 == 1 ? m + 1 : 0);
        }
        return count;
    }
}

完美数

对于一个 正整数,如果它和除了它自身以外的所有 正因子 之和相等,我们称它为 「完美数」。

给定一个 整数 n, 如果是完美数,返回 true,否则返回 false

示例 1:
输入:28
输出:True
解释:28 = 1 + 2 + 4 + 7 + 14
1, 2, 4, 7, 和 14 是 28 的所有正因子。

示例 2:
输入:num = 6
输出:true

示例 3:
输入:num = 496
输出:true

示例 4:
输入:num = 8128
输出:true

示例 5:
输入:num = 2
输出:false

迭代查找

class Solution {
    public boolean checkPerfectNumber(int num) {
        int sum = 0;
        for (int i = 1; i * i <= num; i++) {
            if (num % i == 0) {
                sum += i;
                if (i * i != num)
                    sum += num / i;
            }
        }
        return sum - num == num;
    }
}

数学

欧几里得-欧拉定理告诉我们,每个偶完全数都可以写成 2 p − 1 ( 2 p − 1 ) 2^{p-1}(2^p-1) 2p1(2p1)的形式,其中 p p p 为素数。由于目前奇完全数还未被发现,因此所有的完全数都可以写成上述形式。

public class Solution {
    public int pn(int p) {
        return (1 << (p - 1)) * ((1 << p) - 1);
    }
    public boolean checkPerfectNumber(int num) {
        int[] primes = new int[]{2, 3, 5, 7, 13, 17, 19, 31};
        for (int prime : primes) {
            if (pn(prime) == num)
                return true;
        }
        return false;
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值