【训练脚本的生成】

编写训练脚本:根据stable diffusion的文档、包括数据加载、模型定义、训练循环等训练脚本

以下是一个的训练脚本示例,根据stable diffusion的文档和示例代码进行编写:

import torch
from torch import nn, optim
from torch.utils.data import DataLoader

from diff_dalle import DALLE
from diff_dalle.data import DiffDataset

# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 定义模型
model = DALLE()
model.to(device)

# 定义损失函数
criterion = nn.CrossEntropyLoss()

# 定义优化器
optimizer = optim.Adam(model.parameters())

# 加载数据
dataset = DiffDataset()
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)

# 训练循环
for epoch in range(10):
    model.train()
    
    for i, (input, target) in enumerate(dataloader):
        input = input.to(device)
        target = target.to(device)
        
        optimizer.zero_grad()
        
        output = model(input)
        
        loss = criterion(output, target)
        loss.backward()
        
        optimizer.step()
        
        if (i+1) % 10 == 0:
            print(f"Epoch: {epoch+1}/{10}, Step: {i+1}/{len(dataloader)}, Loss: {loss.item()}")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贺公子之数据科学与艺术

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值