编写训练脚本:根据stable diffusion的文档、包括数据加载、模型定义、训练循环等训练脚本
以下是一个的训练脚本示例,根据stable diffusion的文档和示例代码进行编写:
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from diff_dalle import DALLE
from diff_dalle.data import DiffDataset
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定义模型
model = DALLE()
model.to(device)
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.Adam(model.parameters())
# 加载数据
dataset = DiffDataset()
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
# 训练循环
for epoch in range(10):
model.train()
for i, (input, target) in enumerate(dataloader):
input = input.to(device)
target = target.to(device)
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print(f"Epoch: {epoch+1}/{10}, Step: {i+1}/{len(dataloader)}, Loss: {loss.item()}")