- 博客(4)
- 收藏
- 关注
原创 c++ primer 6第二章数据类型---------读书笔记
第二章 变量与基本类型数据类型1 基本内置类型1.1算术类型1.2 类型转换1.3 字面值常量合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入数据类型英文原句:Types are fundamental to any program: T
2021-04-19 02:08:05 228
原创 机器学习逻辑回归实战python
参考 machine learning inaction为了实现logistic回归分类器,我们可以在每个特征上乘以回归系数,然后把所有的值相加,将总和代入Sigmoid函数中,进而得到一个范围在0~1之间的数值。任何大于0.5的数据归为1类,小于0.5归为0类。Sigmoid函数形式如下:sigmoid(z)输入可写作:Z = w0 * x0 + w1 * x1+…+wn * xn其中x0 = 1, 也可写为Z = sum(wi * xi)+d (i=1,2,…,n)我们参数优化的对
2021-01-26 09:30:52 195
原创 机器学习knn算法实战python
机器学习knn算法实战(参考Machine Learning in action)1. k-近邻算法knn分类算法( k-Nearest Neighbors classification algorithm)是机器学习中的有监督分类算法。其思想十分简单:现要判断测试集中某个实例Test_x的类别,先计算出Test_x到训练集中所有实例{ Train1, train2, …, trainN }的距离{ d1, d2,…, dN}, 然后选出k个距离最近(最相似性)的训练集实例,观察这k个实例的标签,哪类
2021-01-20 20:51:10 251
原创 机器学习综述论文笔记:Machine Learning: A Review of Learning Types
机器学习reviewPaper:Machine Learning: A Review of Learning Types这是一篇关于机器学习的综述,里面简述了各种现有的机器学习技术。1 主要的方法:监督、无监督、强化1.1 监督学习数据格式:特征 + 标签学习目标:到从输入到输出的映射函数根据输出变量划分,监督学习又可以分为分类和回归分类:输出结果是离散的、可列的,如水果种类、手写字体识别。回归:输出结果是连续的,如价格、温度-气压曲线1.2 无监督学习数据格式:特征目标:尝试根据
2020-12-22 11:28:46 3548 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人