题意:
有个脑筋急转弯是这样的:有距离很近的一高一低两座桥,两次洪水之后高桥被淹了两次,低桥却只被淹了一次,为什么?答案是:因为低桥太低了,第一次洪水退去之后水位依然在低桥之上,所以不算“淹了两次”。举例说明:
假定高桥和低桥的高度分别是5和2,初始水位为1
第一次洪水:水位提高到6(两个桥都被淹),退到2(高桥不再被淹,但低桥仍然被淹)
第二次洪水:水位提高到8(高桥又被淹了),退到3。
没错,文字游戏。关键在于“又”的含义。如果某次洪水退去之后一座桥仍然被淹(即水位不小于桥的高度),那么下次洪水来临水位提高时不能算“又”淹一次。
输入n座桥的高度以及第i次洪水的涨水水位ai和退水水位bi,统计有多少座桥至少被淹了k次。初始水位为1,且每次洪水的涨水水位一定大于上次洪水的退水水位。
输入文件最多包含25组测试数据。每组数据第一行为三个整数n, m, k(1<=n,m,k<=105)。第二行为n个整数hi(2<=hi<=108),即各个桥的高度。以下m行每行包含两个整数ai和bi(1<=bi<ai<=108, ai>bi-1)。输入文件不超过5MB。
对于每组数据,输出至少被淹k次的桥的个数。
- <strong>#include <iostream>
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
- #include <queue>
- using namespace std;
- int h[110000];
- int sum[110000];
- int main()
- {
- int n,m,k,t = 0;
- while(cin >> n >> m >> k)
- {
- int num = 1;
- memset(h,0,sizeof(h));
- memset(sum,0,sizeof(sum));
- for(int i = 0;i < n;i++)
- {
- cin >> h[i];
- }
- sort(h,h + n);
- for(int i = 0;i < m;i++)
- {
- int a,b;
- cin >> a >> b;
- int lft = lower_bound(h,h + n,num + 1) - h;
- int rit = lower_bound(h,h + n,a + 1) - h;
- num = b;
- sum[lft]++;
- sum[rit]--;
- }
- int ans = 0;
- int ans_num = 0;
- for(int i = 0;i < n;i++)
- {
- ans_num += sum[i];
- if(ans_num >= k)
- {
- ans++;
- }
- }
- cout << "Case " << ++t << ": " << ans << endl;
- }
- return 0;
- }
再一次败给了思维呐。。。这道题明知有个小技巧却怎么也想不出来
只跟新区间的两个端点
线段树也可以AC
我旁边的人刚刚AC