自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 WIN10 安装detectron2 报错: ‘C:..\\Microsoft Visual Studio\\2019\\..\\\cl.exe‘ failed with exit code 2

摘要: 在Windows 10系统安装detectron2库时遇到编译错误,报错提示cl.exe执行失败(exit code 2)。环境配置包括CUDA 12.1、PyTorch CPU版及VS2019。尝试修改源码和调整CUDA相关代码无效后,发现是系统环境变量缺失导致。解决方案是将cl.exe所在路径(...\MSVC\14.29.30133\bin\Hostx86\x64)添加到系统变量Path中,最终成功安装CPU版detectron2,满足基础运行需求。

2025-12-16 11:41:01 751

原创 win系统下pip 安装Detectron2(V0.6)

摘要:本文介绍了解决Detectron2安装报错"Could not find a version"的方法。由于pip无法找到兼容版本,建议从指定GitHub仓库下载预编译的.whl文件,需根据PyTorch、CUDA和Python版本选择对应文件。下载后通过conda激活环境并使用pip本地安装,最后通过import检测安装是否成功。该方法有效解决了Detectron2的版本兼容性问题。(149字)

2025-12-16 11:39:56 337

原创 [特殊字符] 基于 YOLO 与 ZED 深度相机的高精度目标检测与尺寸、距离测量系统(含源码)

本文提出了一种结合ZED深度相机与YOLO目标检测算法的方法,实现实时目标检测与尺寸测量系统。系统采用多线程架构,通过YOLO进行目标检测识别,利用ZED相机的深度感知能力计算目标的真实宽度、高度和距离。关键技术包括:1)YOLO推理线程与ZED采集线程并行处理;2)基于深度图的目标尺寸精确计算;3)多类别颜色区分显示优化。实验表明,该系统能够实时输出目标位置、类别及三维尺寸信息,可应用于工业检测、机器人导航等场景。 (字数:149)

2025-10-09 20:50:02 746

原创 YOLO旋转框目标检测(OBB)训练自己的数据集(保姆级教程:标注 + 训练)

本文介绍了使用YOLO进行旋转框目标检测(OBB)的完整流程,包括数据标注、数据集划分和模型训练。文章推荐使用labelImg2工具进行OBB标注,并提供了解决闪退问题的方法。标注完成后,可通过代码自动划分训练集、验证集和测试集。整个过程涵盖了从数据准备到模型训练的关键步骤,为旋转框目标检测任务提供了实用指导。

2025-09-11 17:12:23 2747

原创 Windows环境下labelImg2 v1.0版本闪退问题(已解决)

本文介绍了旋转框目标检测标注工具的选择与使用经验。针对YOLO格式导出问题,重点分析了labelimg2工具在运行时出现的闪退问题,指出其根本原因是canvas.py文件中数据类型不匹配导致。通过修改源代码强制转换坐标为整数类型,解决了QPainter.drawLine和drawRect的参数错误问题。同时详细说明了labelimg2的自定义标签设置、自动保存和导出功能。与X-AnyLabeling相比,labelimg2虽然存在数据类型处理的小缺陷,但更适合YOLO训练数据的标注需求。最后建议开发者完善程

2025-09-10 11:45:45 937

原创 X-AnyLabeling标注YOLO目标检测数据,导出标签与实际标注标签不符!!(求教)

X-AnyLabeling标注工具导出YOLO标签出现严重偏差,导致训练效果极差(mAP50仅0.2)。经用LabelImg检查发现,标注位置与导出标签严重不符,但无法确定问题根源。作者怀疑是工具bug或与YOLO标签格式不兼容,提醒同行注意此问题,并寻求解决方案。该工具虽支持多种标注模式和半自动标注功能,但导出环节存在隐患,建议谨慎使用或改用传统工具LabelImg,直至问题明确解决。

2025-09-09 16:41:24 1052 5

原创 python安装tokenizers失败: subprocess-exited-with-error(已解决)

摘要:在虚拟环境中安装X-AnyLabeling依赖时遇到tokenizers库报错(subprocess-exited-with-error)。问题根源是缺少transformers库。解决方法分两步:先执行pip install transformers安装基础依赖,再运行pip install tokenizers即可成功。安装过程通过命令行截图验证,最终解决依赖冲突问题。(98字)

2025-09-08 10:47:59 254

原创 PaddleOCR最难安装的两个库:Polygon3和lanms-neo==1.0.2,安装教程

本文分享了安装PaddleOCR时最棘手的两个依赖库Polygon3和lanms-neo==1.0.2的解决方案。作者发现当前PaddleOCR 3.0版本缺少标注工具PPOCRLabel,因此退回2.6版本。针对这两个库的安装难题,建议使用Python 3.8环境,并提供了免费whl文件下载链接(原网盘资源大多收费)。成功安装这两个关键库后,其他依赖即可通过常规方式完成。文章最后祝福开发者顺利运行项目,并呼吁点赞支持开源分享。

2025-08-22 09:57:38 720

原创 YOLOv8+ZED深度相机,实现目标检测与测距

想使用YOLOv8在检测出目标物体的同时,测量出目标物距离相机之间的距离,因此,采用YOLO+ZED深度相机的方案进行实现。

2025-08-19 17:03:57 1147 3

原创 图像处理:55°英制螺纹与60°美制螺纹的识别与检测

55°牙型角与60°牙型角识别:图像处理

2025-04-09 16:28:35 1356

原创 DCNv4编译报错:14 errors detected in the compilation of “D:../DCNv4_op/src/cuda/dcnv4_cuda.cu

DCNv4编译报错:14 errors detected in the compilation of "D:../DCNv4_op/src/cuda/dcnv4_cuda.cu

2025-03-14 11:40:35 463

原创 Opencv调用海康工业相机采集图像一直是黑色的

opencv调用海康相机采集的图像一直是黑色的,光线很暗,没办法调节进光量

2024-12-18 17:13:54 1864

原创 YOLOv8改进后,训练改进后的模型注意事项(踩坑)

YOLOv8改进后的训练注意事项,很多情况是你训练的框架不是你改进后的框架

2024-10-30 10:55:17 1853 4

原创 仪表数字识别-MATLAB

仪表数字识别-MATLAB背景介绍这篇博客是为了通过传统的图像处理的方式将电子仪表上数字识别、提取并保存excel文件,并没有用到机器学习、神经网络等复杂算法对图像进行训练识别。因此对计算机的性能要求不高,普通配置的计算机装上MATLAB就能跑。1. 图像采集该方式主要是为了将图像中的数字识别出来,为了增加不同仪表的通用性,是需要人工将数字框出来如下图所示,将下面红色框框出的数字进行提取与...

2019-08-22 10:38:05 231

zed+yolo目标检测与目标尺寸测量

zed+yolo目标检测与目标尺寸测量

2025-10-09

Polygon3安装资源,对应python=3.8

主要用于PaddleOCR中Polygon3安装,解压后会得到whl文件,直接pip install + whl文件即可安装,免编译。对应python=3.8

2025-08-22

lanms-neo-1.0.2-cp38-cp38-win-amd64.whl

主要用于PaddleOCR中lanms-neo安装,解压后会得到whl文件,直接pip install + whl文件即可安装,免编译。对应python=3.8

2025-08-22

美制与英制螺纹+图像识别+螺纹牙型角测量+图像处理

在机械紧固的领域中,螺纹紧固是作为其中最具代表性的一种方式。由于其复杂的表面结构和多样化的参数,目前在大多数的工厂中只能采用传统的螺纹卡规和螺纹塞规进行测量,不能进行实时的、高效的在线检测,严重影响了螺纹的加工效率。目前英制螺纹与美制螺纹在牙型角上有55°与60°的区分,可以通过图像处理的方式进行牙型角测量,从而区分美制螺纹与英制螺纹。本资源上传了大约40张英制和美制的螺纹,并将每张螺纹中的图像单独分割,其中有干净的螺纹,也有带毛刺干扰的螺纹,欢迎大家下载,并分享螺纹测量的方法。

2025-04-07

3、铁轨表面缺陷数据-高清图像,都是原图,无数据增强

想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。

2024-10-25

2、铁轨表面缺陷数据-高清图像,都是原图,无数据增强

想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。

2024-10-25

1、铁轨表面缺陷数据-高清图像,都是原图,无数据增强

想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。

2024-10-25

铁轨缺陷图像+YOLO标注

铁轨缺陷数据集

2024-10-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除