自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 图像处理:55°英制螺纹与60°美制螺纹的识别与检测

55°牙型角与60°牙型角识别:图像处理

2025-04-09 16:28:35 952

原创 DCNv4编译报错:14 errors detected in the compilation of “D:../DCNv4_op/src/cuda/dcnv4_cuda.cu

DCNv4编译报错:14 errors detected in the compilation of "D:../DCNv4_op/src/cuda/dcnv4_cuda.cu

2025-03-14 11:40:35 339

原创 Opencv调用海康工业相机采集图像一直是黑色的

opencv调用海康相机采集的图像一直是黑色的,光线很暗,没办法调节进光量

2024-12-18 17:13:54 1245

原创 YOLOv8改进后,训练改进后的模型注意事项(踩坑)

YOLOv8改进后的训练注意事项,很多情况是你训练的框架不是你改进后的框架

2024-10-30 10:55:17 1716 3

原创 仪表数字识别-MATLAB

仪表数字识别-MATLAB背景介绍这篇博客是为了通过传统的图像处理的方式将电子仪表上数字识别、提取并保存excel文件,并没有用到机器学习、神经网络等复杂算法对图像进行训练识别。因此对计算机的性能要求不高,普通配置的计算机装上MATLAB就能跑。1. 图像采集该方式主要是为了将图像中的数字识别出来,为了增加不同仪表的通用性,是需要人工将数字框出来如下图所示,将下面红色框框出的数字进行提取与...

2019-08-22 10:38:05 110

美制与英制螺纹+图像识别+螺纹牙型角测量+图像处理

在机械紧固的领域中,螺纹紧固是作为其中最具代表性的一种方式。由于其复杂的表面结构和多样化的参数,目前在大多数的工厂中只能采用传统的螺纹卡规和螺纹塞规进行测量,不能进行实时的、高效的在线检测,严重影响了螺纹的加工效率。目前英制螺纹与美制螺纹在牙型角上有55°与60°的区分,可以通过图像处理的方式进行牙型角测量,从而区分美制螺纹与英制螺纹。本资源上传了大约40张英制和美制的螺纹,并将每张螺纹中的图像单独分割,其中有干净的螺纹,也有带毛刺干扰的螺纹,欢迎大家下载,并分享螺纹测量的方法。

2025-04-07

3、铁轨表面缺陷数据-高清图像,都是原图,无数据增强

想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。

2024-10-25

2、铁轨表面缺陷数据-高清图像,都是原图,无数据增强

想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。

2024-10-25

1、铁轨表面缺陷数据-高清图像,都是原图,无数据增强

想用深度学习的方法做一个轨道表面缺陷检测的项目,无奈找不到数据集,各大铁路轻轨运行的公司也不对外开放轨道缺陷图像,网上的数据集要不是那种损坏特别严重的图像(严重到根本无法在使用的),要不都是根据几十张图像进行数据增强凑数的,训练效果也不太好。我一气之下花了几个月的时间在各大开放数据集中找了600张高清的轨道表面缺陷图像,都是高质量的原图,但没有打标签,需要各位重新标注。由于600张一起上传太大,现在分为3批上传,每批200张,给大家开源,共同学习。数据收集不易,对大家有帮助的,请帮忙点个赞,打赏一下。谢谢。

2024-10-25

铁轨缺陷图像+YOLO标注

铁轨缺陷数据集

2024-10-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除