暑期选拔第二场 7-6 补题 零
Aphelios有一个n×m的矩阵,矩阵中每个位置都有一个数,我们将第i行第j列的数记为a
ij,现在Aphelios要玩一个游戏。
一开始,Ahpelios在(1,1)处,现在Aphelis要前往(n,m),每次Aphelios可以向下或者向右移动,每经过一个点Aphelios的得分都会乘以该点的数字(一开始分数为1)。
由于Ahpelios喜欢0,所以他希望他的分数末尾的0的数量尽量多,现在,他想知道他的分数末尾的0最多有多少个。
输入格式:
输入第一行两个数n,m(1≤n,m≤100),接下来n行,每行m个数,分别代表矩阵中的数(1≤aij≤500)
输出格式
输出仅一个整数,代表最后成绩末尾0最多的数量。
要点:
1.零的数量其实本质上与2,5的数量有关,可以预处理出每个位置2和5因子的数量。
2.dp可以不利用递归来实现,直接由输入的顺序即可,因为 当前状态 只能由前面已经输入的状态来得到;
3.2和5可以一个维护一个用来转移;
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
#define rep(i,x,y) for(int i=x;i<y;i++)
#define rept(i,x,y) for(int i=x;i<=y;i++)
int get2(int x)
{
int ans=0;
while(x)
{
if(x%2==0)
ans++;
else
break;
x/=2;
}
return ans;
}
int get5(int x)
{
int ans=0;
while(x)
{
if(x%5==0)
ans++;
else
break;
x/=5;
}
return ans;
}
int dp[102][102][606],n,m;
int main()
{
cin>>n>>m;
rept(i,0,n) rept(j,0,m) rept(k,0,605) dp[i][j][k]=-100000;
dp[0][1][0]=0;
rept(i,1,n) rept(j,1,m)
{
int x;
cin>>x;
int num2=get2(x),num5=get5(x);
rep(k,num5,605)
dp[i][j][k]=max(dp[i-1][j][k-num5],dp[i][j-1][k-num5])+num2;
}
int ans=0;
rept(i,1,600) ans=max(ans,min(i,dp[n][m][i]));
cout<<ans;
}