2021-07-14

暑期选拔第二场 7-6 补题 零

Aphelios有一个n×m的矩阵,矩阵中每个位置都有一个数,我们将第i行第j列的数记为a
​ij,现在Aphelios要玩一个游戏。
  一开始,Ahpelios在(1,1)处,现在Aphelis要前往(n,m),每次Aphelios可以向下或者向右移动,每经过一个点Aphelios的得分都会乘以该点的数字(一开始分数为1)。
  由于Ahpelios喜欢0,所以他希望他的分数末尾的0的数量尽量多,现在,他想知道他的分数末尾的0最多有多少个。
输入格式:
  输入第一行两个数n,m(1≤n,m≤100),接下来n行,每行m个数,分别代表矩阵中的数(1≤aij≤500)
输出格式
输出仅一个整数,代表最后成绩末尾0最多的数量。

要点:
1.零的数量其实本质上与2,5的数量有关,可以预处理出每个位置2和5因子的数量。
2.dp可以不利用递归来实现,直接由输入的顺序即可,因为 当前状态 只能由前面已经输入的状态来得到;
3.2和5可以一个维护一个用来转移;

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;

#define rep(i,x,y) for(int i=x;i<y;i++)
#define rept(i,x,y) for(int i=x;i<=y;i++)

int get2(int x)
{
	int ans=0;
	while(x)
	{
		if(x%2==0)
		ans++;
		else
		break;
		x/=2;
	}	
	return ans;
}

int get5(int x)
{
	int ans=0;
	while(x)
	{
		if(x%5==0)
		ans++;
		else
		break;
		x/=5;
	}
	return ans;
}

int dp[102][102][606],n,m;

int main()
{
	cin>>n>>m;
	rept(i,0,n) rept(j,0,m) rept(k,0,605) dp[i][j][k]=-100000;
	dp[0][1][0]=0;
	rept(i,1,n) rept(j,1,m)
	{
		int x;
		cin>>x;
		int num2=get2(x),num5=get5(x);
		rep(k,num5,605)
		dp[i][j][k]=max(dp[i-1][j][k-num5],dp[i][j-1][k-num5])+num2;
	}
	int ans=0;
	rept(i,1,600) ans=max(ans,min(i,dp[n][m][i]));
	cout<<ans;

	
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值