- 博客(33)
- 资源 (1)
- 收藏
- 关注
原创 linux服务器远程下载Google drive文件
https://blog.csdn.net/qq1483661204/article/details/103808365转载可用
2021-05-25 17:04:54 2188
原创 list.append() 存在的一些问题解释 copy?
```python>>> a = [['a']]>>> a.append(1)>>> id(1)94887599014656>>> id(a[1])94887599014656>>>>>> list = [1,12,'a']>>> a.append(list)>>> a[['a'], 1, [1, 12, 'a']]>>>.
2021-03-02 16:14:57 449
原创 2020-08-11
RuntimeError: Trying to backward through the graph a second time, but the buffers have already been freed. Specify retain_graph=True when calling backward the first time.解决:https://oldpan.me/archives/pytorch-retain_graph-work
2020-08-11 14:48:08 199
原创 object_detection_目标检测总结
文章目录概述传统一阶段二阶段RCNN深度学习算法与传统算法的界限Fast-RCNNRNN的改进版本Faster-RCNNFast R-CNN进阶版Faster-RCNN结构RPN_LOSSRPN_过程YOLOv1YOLOv2YOLOv3基础网络Anchor-freeAnchor的缺点分类CenterNet与Anchor-based方法的区别:DLA-34HeatmapLOSS预测阶段存在的问题结果的对比思考参考资料结果的对比思考参考资料概述传统区域选择->特征提取HOG(直方图梯度)->特
2020-06-18 21:28:58 718
原创 ml
文章目录第一章 绪论第二章 贝叶斯分类器单属性情况离散多属性情况连续属性情况第三章 最近邻分类器(Nearest Neighbor)第四章 线性和多项式模型线性模型的定义:线性回归(linear r egression)非线性可分问题第五章 决策树(decision tree)5.1 构造决策树5.2 ID3决策树5.3 C4.5决策树5.4 过拟合5.5 CART决策树第六章 人工神经网络(neural network)6.1 神经元(neuron)模型6.2 多层感知机(perceptro
2020-06-07 23:09:37 794
原创 Resnetv2经典结构及其代码
残差网络定义(conv+bn+relu)*2 ->conv+bn +残差 再relu 典型的resnetv2
2020-03-22 17:50:13 590 3
原创 VIBE:配置环境以及论文思想与创新点分析,Ubuntu18+cuda10.1+torch-1.4.0+torchvision0.5.0
*论文:https://arxiv.org/abs/1912.05656GitHub:https://github.com/mkocabas/VIBEAMASS数据集:https://amass.is.tue.mpg.de/***VIBE:Video Inference for Human Body Pose and Shape Estimation**前面的nvidia,cud...
2020-03-21 21:49:44 1789 38
原创 linux新来的操作
#pip源头mkdir ~/.pipvi ~/.pip/pip.conf[global]timeout = 10 # 超时index-url = http://mirrors.aliyun.com/pypi/simple/ # 第一源index-index-url = http://pypi.douban.com/simple/ # 第二[install]trusted-ho...
2020-03-20 23:40:18 97
原创 利用pyinstall打包python打包为exe,windows可执行文件
pip install pyinstallpyinstaller -F your.py#然后它会告诉你your.exe在哪#出错可以装这个包pip install --upgrade cffi#还错就装pip install setuptools
2020-02-24 20:33:44 351
原创 hmr新机linux安装过程从最初出发
bash Anaconda2-4.2.0-Linux-x86_64.sh##这个网站下载https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda2-4.2.0-Linux-x86_64.sh##echo ‘export PATH="/home/tkh/anaconda2/bin:$PATH"’ >> ~/.bash...
2020-02-19 16:19:01 234
原创 hmr安装的全过程以及中途遇到的问题加解决命令,最终成功运行,虽然在服务器上一下装好了,在自己的虚拟机就很多问题0.0
absl-py0.8.1enum341.1.6freetype2.5.5 2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/freefuncsigs 1.0.2 pypi_0 pypihtml5lib ...
2020-01-17 19:53:47 2782
原创 Caffe的hello world
最终训练结果图参照https://blog.csdn.net/liuweiyuxiang/article/details/79532073修改的两条命令也就是批处理文件转换数据的mnist_data.dat.\build\examples\mnist\Release\convert_mnist_data.exe .\data\mnist\train-images.idx3-ubyte .\...
2019-12-18 16:02:59 193
原创 caffe+window10+cpu+python3 安装
1.git clone https://gitee.com/kai_hui_tang/caffe.git先下载caffe包,到我的码云进行下载,速度很快2.git checkout windows链接win分支3.修改E:\caffe\scripts\build_win.cmd4.运行文件 start scripts/build_win.cmd这里弹出新窗口会报错需要手动下载依赖包,...
2019-12-11 15:36:01 255
原创 MASK-RCNN - demo测试CPU版 无GPU
今天跑了一下maskrcnn的demo,配置了一下环境环境配置和源码链接:https://gitee.com/kai_hui_tang/MaskRCNN-Keypoint-Demo几个坑要注意一下:keras最好对应你的TensorFlow版本,我的是1.14.0,keras装了2.15.5第二个坑是安装git工具官网下载下载安装包之后一直next默认安装就好了第三个坑是安装VS2015,...
2019-11-09 21:45:38 1632 5
原创 pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple清华源科大源
pip install xxx -i https://pypi.tuna.tsinghua.edu.cn/simple
2019-11-09 17:19:20 6891
原创 linux-CenterNet暂定
安装anaconda后打开终端方法echo ‘export PATH="/home/tangkaihui/anaconda3/bin:$PATH"’ >> ~/.bashrcsource ~/.bashrc第二步创建Centernet环境并且激活conda create --name CenterNet python=3.6#创建完之后在你的anaconda3/envs下会有...
2019-11-09 17:18:20 254
原创 ubuntu或linux下安装anaconda后无法打开conda命令的解决方案
输入上面两句即可 echo 'export PATH="/home/tangkaihui/anaconda3/bin:PATH"′>> /.bashrctangkaihui@tangkaihui−virtual−machine: PATH"' >> ~/.bashrctangkaihui@tangkaihui-virtual-machine:~PAT...
2019-10-31 18:27:59 2792 2
原创 神经网络优化算法综述概括
优化算法综述:Sebastian Ruder-An overview of gradient descent optimization algorithms结合这篇翻译https://blog.csdn.net/qq_16234613/article/details/78912322以及这篇带公式的博客https://blog.csdn.net/Ce1estial/article/detail...
2019-10-15 22:27:32 291
原创 《机器学习》(周志华)课后习题参考答案
https://blog.csdn.net/kchai31/article/details/78966941
2019-10-08 21:55:00 3388
原创 2019/10/8,机器学习(周志华)第7、8章及学习笔记
推荐一篇链接书上的重点概况集成学习https://www.cnblogs.com/Rxma1805/p/8509498.html吐槽一下:这本书太难懂了很多都不全面只是一些概念0.0,tnl
2019-10-08 21:50:12 134
原创 交叉熵-MNIST加入多个隐藏层训练并且加入多个神经元以测试dropout层防止过拟合问题
二次代价函数在这里插入图片描述激活函数中我之前有总结一些常用的https://mp.csdn.net/mdeditor/101433613#激活函数交叉熵代价函数对数释然函数## 拟合见机器学习笔记过拟合:增加数据集,正则化方法,Dropout(训练过程中使部分神经元不工作,即随机忽略部分神经元)#载入数据集mnist = input_data.read_data_sets("...
2019-09-27 21:19:10 457 1
转载 TensorFlow中的激活函数总结
TensorFlow中的激活函数总结常用激活函数:tf.sigmoid()tf.tanh()tf.nn.relu()tf.nn.softplus()tf.nn.softmax()tf.nn.dropout()tf.nn.elu()import numpy as npimport matplotlib.pyplot as pltfrom scipy.misc im...
2019-09-26 12:31:41 662
原创 简单分类模型,之后会加隐藏层
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#载入数据集mnist = input_data.read_data_sets("MNIST_data",one_hot=True)#每个批次的大小batch_size = 100 #可修改#计算一共有多少个批次n_bat...
2019-09-26 11:32:02 207
原创 简单神经网络模型实战
一个简单的TensorFlow使用示例import tensorflow as tfimport numpy as npfrom matplotlib import pyplot as plt# s使用numpy生成200个随机点x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]noise = np.random.normal(0, ...
2019-09-24 21:32:35 276
原创 2019/9/16,机器学习(周志华)第三、四章及学习笔记
线性判别分析:LDA也称Fisher判别分析,主要思想是两点同类相近、异类远离,适用于二分类,也可用于多分类,具体公式按书上推导可得。多分类问题:将复杂问题拆分为多个二分类任务,即多个分类器经典分法:OvO,OvR,MvM(一对一,一对其余,多对多),将类别划分为正反类MvM常用技术为纠错输出码(ROOC):第一步编码,将N个类别做M次划分产生M个训练集(正类和反类),第二步解码,即用测试用...
2019-09-16 21:56:47 148
原创 2019/9/12,机器学习(周志华)第三章及学习笔记
本章的内容是线性模型,先从简单的线性回归到应用于二分类的对数回归。f(xi)=wxi+b,为了确定线性模型中的w和b,用上一章提到的均方误差mse来求解,试图将mse最小化来得到线性模型中较好的w和b(理论上是最好的),这种方法称为最小二乘法。最小二乘法在其他领域也有用途,例如在我之前的视差图精化的亚像素插值中也用到了最小二乘法拟合。而此处线性回归中的最小二乘法是指找到一条直线,使所有样本到...
2019-09-12 20:42:20 220
原创 2019/9/11,机器学习(周志华)第二章及学习笔记
回顾昨天的帖子,结合今天余老师上课说的,将机器学习分为三个大类来理解。1.应用场景 监督学习 Supervised 半监督学习 Semi-Supervised 无监督学习 Un-Supervised 迁移学习 transfer 强化学习 reinforcement2.任务 回归 分类 结构化3.方法**deep learning,SVM,decision-...
2019-09-11 21:18:21 185
原创 2019/9/10,机器学习(周志华)第一章及学习笔记
机器学习学习算法学习算法主要分为两类:监督学习:也称有导师学习,指使用的训练集training set有标记情况;若想预测的是离散值称为分类,反之连续值为回归。无监督学习:也称无导师学习,指training set无标记信息,如聚类中将无标记数据集分为簇。通常的机器学习是通过输入数据得到输出,将我们所得到的数据集分为训练集(training set)和测试集(testing set),...
2019-09-10 20:41:02 196
原创 对视差图(disparity map)进行视差精化的几种操作总结简介
对立体匹配中的前向步骤可得视差图,对视差图可进行如下的后处理亚像素增强(subpixel enhancement):常用左右视差值进行二项式插值拟合和左右一致性验证(LRC)后进行插值操作(取周围16邻域均值,或左右匹配点或二者较小值)滤波去噪:在立体匹配步骤中滤波是一个很好的去噪方法,何凯明大神的论文主页中有非固定权重的中值滤波,其中也应用到了引导滤波。我主要采用了三类滤波,中值滤波和双边...
2019-06-29 23:09:24 6401 2
原创 caffe+matlab=matcaffe安装实践(不能装GPU情况下)
https://github.com/Microsoft/caffe 点击download下载安装包1.下载caffe压缩包,然后解压。文件夹为caffe-master,点击windows文件夹,将CommonSettings.props.example文件复制一份到当前Windows目录下并重命名为CommonSettings.props。2.用vscode或者其他文本编辑器打开新的Com...
2019-05-03 17:24:02 1984 2
原创 matlab imabsdiff运算
计算两个uint8数组之间的绝对差。请注意,绝对值防止将结果中的负值四舍五入为零,就像使用imSubtract时一样。x=uint8([255 10 75;44 225 100]);y=uint8([50 50 50;50 50 50]);Z=ImabsDiff(x,y)%结果为差绝对值与imSubtract负数为0不同Z=205 40 406 175 175...
2019-04-26 10:09:45 1394 2
原创 MATLAB toc使用
Matlab toc使用fprintf (‘Time Spend : %f \n’,toc)欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编...
2019-04-25 11:27:49 892
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人