聚类算法之Kmeans聚类详解

本文介绍了聚类算法的基本原理,如K-means的计算流程,以及如何通过SSE、肘方法和轮廓系数评估聚类效果。通过分析customers.csv数据集,确定了K-means的最佳聚类类别数为5。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

聚类算法是无监督学习算法,它根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧氏距离法。聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式。

聚类算法的分类:

  • 按照聚类细粒度分类:细聚类和粗聚类

  • 根据实现方法分类:

    • K-means:按照质心分类,主要介绍K-means,通用、普遍

    • 层次聚类:对数据进行逐层划分,直到达到聚类的类别个数

    • DBSCAN聚类:基于密度的聚类算法

    • 谱聚类:基于图论的聚类算法

KMeans基本思路

通过计算相似度(默认欧氏距离),将相似度大的样本聚集到同一个类别,K表示聚成K个类别,means表示每个类别的聚类中心点是通过簇中所有样本点的均值得到。

KMeans算法流程:

  • 事先确定常数K,K是最终的聚类类别数

  • 随机选择K个样本点作为初始的聚类中心

  • 计算每个样本点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的卡特琳娜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值