NN
七七啊
沙坡村职业技术学院-ML&QF
keep studying!
展开
-
神经网络实验经验
1. 权重以及偏置的初始化影响很大。不能随便用标准正态分布直接初始化。数据量小的时候,用weights=tf.Variable(tf.random_normal([input_size,out_size]))*np.sqrt(1/float(input_size))bias=tf.Variable(tf.random_normal([1,out_size]))*np.sqrt(1/float(in...原创 2018-03-14 10:58:43 · 1415 阅读 · 0 评论 -
深度学习调参技巧
最近调参调的很无力,从网上找了一些调参技巧总结一下,希望最自己精度提升有帮助。参考知乎:https://www.zhihu.com/question/250979930. 先把中间多余的计算去掉,等参数调好精度上去了再计算中间的。节省时间!!!1. 更多关注loss而不是acc。2. 先用小数据集进行计算,如果精度都没有上去,应该反思模型的是否正确。大网络小数据集一般都会过拟合,训练精度肯定不错。...原创 2018-04-23 15:30:56 · 1416 阅读 · 0 评论 -
神经网络参数初始化方式
看了文章《Understanding the difficulty of training deep feedforward neural networks》,里面提出了两种参数初始化的方法:以及normalized initialization——xavier方法:最近做实验,发现网络的初始化太重要!其实神经网络本身就是一个dark box, 但是每一个参数怎么设置怎么调节是最有技术的。几种可行...原创 2018-04-25 17:18:42 · 4580 阅读 · 0 评论 -
看懂代码大法!!!
看有关神经网络代码的时候,层数太多,太复杂,就输出中间层的结构!!!看了好几天的代码没看懂,用了这个方法之后1小时就看完了!!!(有点像广告。。。???不过是真的!!!希望自己能够记住,专门写个帖子)...原创 2018-05-15 11:12:04 · 3936 阅读 · 4 评论 -
tensorflow>>>official模块resnet代码讲解
cifar10结构:一共有32层:1. 第一个卷积层将输入数据(32*32*3)变为32*32*162. 下来是3种block, 每种有5个block块,每一块有2个卷积层(30层)3. 最后是一个全连接层(64*10)中间的block:每一种block中,第一个block的projecton为一个卷积操作,对数据维数进行变化,后面4个block块的projection都是identity。结构图...原创 2018-05-15 11:57:13 · 1244 阅读 · 0 评论 -
彩色图像数据预处理方法
1. 归一化2. PCA:3. ZCA对数据做白化处理必须满足两个条件:使数据的不同维度去相关;使数据每个维度的方差为1;条件1要求数据的协方差矩阵是个对角阵;条件2要求数据的协方差矩阵是个单位矩阵。为什么使用白化?教程给出的解释是:假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的。白化的目的就是降低输入的冗余性。比如在独立成分分析(ICA)中,对数据做白化预...转载 2018-05-29 11:16:54 · 3183 阅读 · 0 评论 -
dropout源码学习
注: 这是一个学习笔记,不定时更新。里面用到的技巧: 1. max-norm regularization2. dropout 比例的设置,输入层 隐层都可以执行dropout; 输入层一般不使用,如果使用的话keep_prob=0.9; 中间层的keep_prob=0.5-0.8,常用0.53. 优化算法:动量+GD4. 隐单元的激活函数: sigmoid/ relu/ logist...原创 2018-06-05 10:06:16 · 618 阅读 · 0 评论