机器学习
龙骨
这个作者很懒,什么都没留下…
展开
-
tf.get_variable() vs tf.Variable(),tf.name_scope() vs tf.variable_scope()
转:http://blog.csdn.net/lanchunhui/article/category/6505404scope 命名方法对于一个复杂的 tensorflow 模型会有很多个变量, tf.variable_scope() :提供了简单的命名空间技术以避免冲突;tf.get_variable():从同一个变量范围内获取或者创建;见名知意,tf.Varia转载 2017-05-10 11:31:27 · 957 阅读 · 0 评论 -
http://www.cnblogs.com/DjangoBlog/category/541903.html
http://m.blog.csdn.net/article/details?id=49591213转:http://www.cnblogs.com/DjangoBlog/tag/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/1. 前言在学习深度学习的过程中,主要参考了四份资料:台湾大学的机器学习技法公开课;Andrew NG的深度学习教转载 2017-05-09 09:29:47 · 697 阅读 · 0 评论 -
神经网络的直观解释
这篇文章原地址为An Intuitive Explanation of Convolutional Neural Networks,卷积神经网络的讲解非常通俗易懂。转:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/什么是卷积神经网络?为什么它们很重要?卷积神经网络(ConvNets 或者 CN转载 2017-05-08 21:11:02 · 855 阅读 · 0 评论 -
卷积神经网络初学者指南
Part 1:图像识别任务介绍卷积神经网络,听起来像是计算机科学、生物学和数学的诡异组合,但它们已经成为计算机视觉领域中最具影响力的革新的一部分。神经网络在 2012 年崭露头角,Alex Krizhevsky 凭借它们赢得了那一年的 ImageNet 挑战赛(大体上相当于计算机视觉的年度奥林匹克),他把分类误差记录从 26% 降到了 15%,在当时震惊了世转载 2017-05-08 20:41:30 · 586 阅读 · 0 评论 -
深度学习这么火,但要小心不要被它忽悠了
近几年,人工智能异常火爆,相关创业公司也如雨后春笋般纷纷冒了出来。论及它为何突然爆发,深度学习算法的提出无非是其中最重要的原因,以至于很多人开口闭口都是深度学习。然而,深度学习真是万能的吗? 在深度学习出现之前,人工智能领域应用最广泛、最活跃的方法便是专家系统,这是一种用大量 “如果-就”(If – Then)规则定义的、自上而下的系统。专家系统可以根据某领域一个或多个专家提供的知识和经转载 2017-05-08 18:24:32 · 1575 阅读 · 0 评论 -
机器学习和深度学习的最佳框架
软件开发云,集华为近30年研发精华开发神器!>>> 在过去的一年里,咱们讨论了六个开源机器学习和/或深度学习框架:Caffe,Microsoft Cognitive Toolkit(又名CNTK 2),MXNet,Scikit-learn,Spark MLlib和TensorFlow。如果把网撒得大些,可能还会覆盖其他几个流行的框架,包括Theano(一个10年之久的Python转载 2017-05-08 18:23:01 · 1139 阅读 · 0 评论 -
基于 10 大编程语言的 30 个深度学习库
本文介绍了包括 Python、Java、Haskell等在内的一系列编程语言的深度学习库。PythonTheano 是一种用于使用数列来定义和评估数学表达的 Python 库。它可以让 Python 中深度学习算法的编写更为简单。很多其他的库是以 Theano 为基础开发的:Keras 是类似 Torch 的一个精简的,高度模块化的神经网络库。Theano 在底层帮助其转载 2017-05-08 18:13:45 · 1363 阅读 · 0 评论 -
tf.expand_dims和tf.squeeze函数
tf.expand_dims()Functiontf.expand_dims(input, axis=None, name=None, dim=None)Inserts a dimension of 1 into a tensor’s shape. 在第axis位置增加一个维度Given a tensor input, this operation insert翻译 2017-05-16 14:25:59 · 87842 阅读 · 2 评论 -
深度卷积对抗生成网络(DCGAN)
卷积神经网络在有监督学习中的各项任务上都有很好的表现,但在无监督学习领域,却比较少。本文介绍的算法将有监督学习中的CNN和无监督学习中的GAN结合到了一起。在非CNN条件下,LAPGAN在图像分辨率提升领域也取得了好的效果。与其将本文看成是CNN的扩展,不如将其看成GAN的扩展到CNN领域。而GAN的基本算法,可以参考对抗神经网络。GAN无需特定的cost func转载 2017-05-16 13:25:07 · 635 阅读 · 0 评论 -
机器学习中的损失函数
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面转载 2017-05-07 21:26:37 · 301 阅读 · 0 评论 -
LS-GAN:把GAN建立在Lipschitz密度上
最近很多关心深度学习最新进展,特别是生成对抗网络的朋友可能注意到了一种新的GAN-- Wasserstein GAN。其实在WGAN推出的同时,一种新的LS-GAN (Loss Sensitive GAN,损失敏感GAN)也发表在预印本 [1701.06264] Loss-Sensitive Generative Adversarial Networks on Lipschitz Densit转载 2017-05-07 21:29:56 · 1533 阅读 · 0 评论 -
About Session, Graph, Operation and Tensor
简介上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统。而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的。所以Tensorflow的计算过程就是一个Tensor流图。Tensorflow的图则是必须在一个Session中来计算。这篇笔记来大致介绍一下转载 2017-05-09 16:18:19 · 305 阅读 · 0 评论 -
Tensorflow一些常用基本概念与函数(4)
摘要:本系列主要对tf的一些常用概念与方法进行描述。本文主要针对tensorflow的模型训练Training与测试Testing等相关函数进行讲解。为‘Tensorflow一些常用基本概念与函数’系列之四。1、序言本文所讲的内容主要为以下列表中相关函数。函数training()通过梯度下降法为最小化损失函数增加了相关的优化操作,在训练过程中,先实例化一个优化函数,比如 tf.train.转载 2017-05-09 16:30:56 · 448 阅读 · 0 评论 -
【TensorFlow】tf.nn.conv2d是怎样实现卷积的?
转;http://blog.csdn.net/mao_xiao_feng/article/category/6543171tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要tf.nn.conv2d(input, filter, strides, padding, use_c转载 2017-05-10 11:17:47 · 390 阅读 · 0 评论 -
Tensorflow一些常用基本概念与函数(1)
转:http://blog.csdn.net/lenbow/article/category/61940081、tensorflow的基本运作为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始:import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder("float") b = tf.placeho转载 2017-05-10 11:02:11 · 477 阅读 · 0 评论 -
tensorflow自学之前的bigpicture
转:http://blog.csdn.net/jdbc/article/details/68957085一、前言目前,深度学习已经广泛应用于各个领域,比如图像识别,图形定位与检测,语音识别,机器翻译等等,对于这个神奇的领域,很多童鞋想要一探究竟,这里抛砖引玉的简单介绍下最火的深度学习开源框架 tensorflow。本教程不是 cookbook,所以不会将所有的东西都事无巨细转载 2017-05-10 01:57:31 · 357 阅读 · 0 评论 -
资源|TensorFlow的71个使用教程与案例(资源汇总)
TensorFlow Examples TensorFlow Tutorial with popular machine learning algorithms implementation. This tutorial was designed for easily diving into TensorFlow, through examples. It is suitabl转载 2017-05-10 01:42:35 · 919 阅读 · 0 评论 -
TensorFlow 资源大全中文版
jtoy 发起整理的 TensorFlow 资源,包含一些很棒的 TensorFlow 工程、库、项目等。什么是TensorFlow?TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多转载 2017-05-10 01:25:51 · 694 阅读 · 0 评论 -
TensorFlow 中文文档
介绍本章的目的是让你了解和运行 TensorFlow在开始之前, 先看一段使用 Python API 撰写的 TensorFlow 示例代码, 对将要学习的内容有初步的印象.这段很短的 Python 程序生成了一些三维数据, 然后用一个平面拟合它.import tensorflow as tfimport numpy as np# 使用 NumPy 生成假数据(p翻译 2017-05-10 00:54:48 · 1615 阅读 · 0 评论 -
分布式TensorFlow及实例分析
TensorFlow发展及使用简介2015年11月9日谷歌开源了人工智能系统TensorFlow,同时成为2015年最受关注的开源项目之一。TensorFlow的开源大大降低了深度学习在各个行业中的应用难度。TensorFlow的近期里程碑事件主要有:2016年11月09日:TensorFlow开源一周年。2016年09月27日:TensorFlow支持机器翻译模型。转载 2017-05-09 23:58:35 · 880 阅读 · 0 评论 -
谈谈深度学习中的 Batch_Size和epoches
Batch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开。首先,为什么需要有 Batch_Size 这个参数?Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 ( Full Batch Learning )的形式,这样做至少有 2 个好处:其一,由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。其转载 2017-05-09 15:52:09 · 6682 阅读 · 1 评论 -
Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
[1]Deep learning简介[2]Deep Learning训练过程[3]Deep Learning模型之:CNN卷积神经网络推导和实现[4]Deep Learning模型之:CNN的反向求导及练习[5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN[6]Deep Learning模型之:CNN卷积神经网络(二)文字识别转载 2017-05-18 13:58:31 · 1023 阅读 · 0 评论 -
tensorflow笔记 :常用函数说明
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec转载 2017-05-15 23:40:34 · 418 阅读 · 0 评论 -
TensorFlow Data Input (Part 1): Placeholders, Protobufs & Queues 占位符,原型和队列
转:https://indico.io/blog/tensorflow-data-inputs-part1-placeholders-protobufs-queues/TensorFlow is a great new deep learning framework provided by the team at Google Brain. It supports the symbolic转载 2017-05-15 21:51:07 · 637 阅读 · 0 评论 -
开源|效果惊人!Cycle Gan瞬间让马变成斑马
文章来源:Github 翻译:马卓奇博士 从油画生成照片,将马转换成斑马,进行风格转换,以及更多(UC Berkeley) 项目主页:https://junyanz.github.io/CycleGAN/ 论文:https://arxiv.org/pdf/1703.10593.pdf 本文是用Torch实现的图像到图像的转换(pix2pix),而不用输入输出数据对,...转载 2017-05-14 00:00:56 · 12092 阅读 · 2 评论 -
A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Introduction 本文将会更加详细地介绍卷积网络。声明:现在我意识到有些内容相当复杂,甚至需要用一整篇文章才能解释清楚。为了内容详尽的同时尽量保证文章精简,我会将有关内容的参考文献链接到本文中。Stride and Padding 好的,让我们回忆一下我们的老朋友卷积层。还记得那些滤波器、感知区、卷积吗?现在让我们介绍两个转载 2017-05-13 21:10:41 · 561 阅读 · 0 评论 -
A Beginner's Guide To Understanding Convolutional Neural Networks
Introduction 卷积神经网络CNN,虽然它听起来就像是生物学、数学和计算机的奇怪混杂产物,但在近些年的机器视觉领域,它是最具影响力的创新结果。随着Alex Krizhevsky开始使用神经网络,将分类错误率由26%降到15%并赢得2012年度ImageNet竞赛(相当于机器视觉界的奥林匹克)时,它就开始声名大噪了。从那时起,一票公司开始在它们的核心服务中转载 2017-05-13 21:09:43 · 269 阅读 · 0 评论 -
The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)
当时看到英文的博客,本想翻译给感兴趣的同学们看看,没想到已经有人翻译,于是进行了转载,留给自己和更多的人学习,本文仅供参考。英文博客:https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html原文网址:ht转载 2017-05-13 21:03:22 · 496 阅读 · 0 评论 -
LS-GAN(损失敏感GAN)
PS: 获取更好的阅读体验,请前往知乎专栏。 好早以前就说要写一篇LS-GAN,loss sensitive GAN[1]的读书笔记,一直没有写,今天就来聊聊LS-GAN,请注意,它不是我们上一期所说的LSGAN(least square GAN)。 开始本期文章解读之前,先来回答以下上上期谈LSGAN时留下的问题,当时提到了least square GAN优化的目标是转载 2017-05-13 17:45:24 · 5635 阅读 · 1 评论 -
机器学习
在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。当然,本文也面对一般读者,不会对阅读有相关的前提要求。 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢? 我转载 2017-01-12 21:59:49 · 1815 阅读 · 1 评论 -
机器学习常见算法综述
机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。学习方式根据数据类型的不同,对一个转载 2017-01-12 21:53:29 · 1030 阅读 · 0 评论 -
算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)
1.1、摘要 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。1.2、分类问题综述 对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点转载 2017-01-12 18:15:08 · 329 阅读 · 0 评论 -
机器学习&数据挖掘算法
找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大。 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内大点的公司里转载 2017-01-12 17:44:05 · 575 阅读 · 0 评论 -
深度卷积对抗生成网络(DCGAN)
注:有时间去看英文原版。本文是参考文献[1]的论文笔记。卷积神经网络在有监督学习中的各项任务上都有很好的表现,但在无监督学习领域,却比较少。本文介绍的算法将有监督学习中的CNN和无监督学习中的GAN结合到了一起。在非CNN条件下,LAPGAN在图像分辨率提升领域也取得了好的效果。与其将本文看成是CNN的扩展,不如将其看成GAN的扩展到CNN领域。而GAN的基转载 2017-05-14 00:04:58 · 910 阅读 · 0 评论 -
GAN——LSGANs(最小二乘GAN)
转:http://blog.csdn.net/victoriaw/article/details/60755698#lsgans的损失函数表达式LSGANs基本思想LSGANs的英文全称是Least Squares GANs。这篇文章针对的是标准GAN生成的图片质量不高以及训练过程不稳定这两个缺陷进行改进。改进方法就是将GAN的目标函数由交叉熵损失换成最小二乘损失,而且这一转载 2017-05-14 01:43:18 · 1366 阅读 · 0 评论 -
深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)
(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。SGD此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具转载 2017-05-14 02:26:36 · 808 阅读 · 0 评论 -
xuexi2
1智能单元 - 知乎专栏长期原创和翻译深度学习和深度增强学习等领域高质量文章,并接受知友投稿,投稿前请阅读投稿说明。最前沿系列最前沿系列解读我们认为的深度学习领域有巨大影响的论文和成果。最前沿:史蒂夫的人工智能大挑战最前沿:让计算机学会学习Let Computers Learn to Learn最前沿:从虚拟到现实,迁移深度增强学习让机器人革命成原创 2017-05-14 03:24:36 · 683 阅读 · 0 评论 -
tensorflow解决问题的思路
如需转载,请注明出处,欢迎加入深度学习群 255568483Tensorflow的介绍请各位自行google,就不做多的介绍了。Tensorflow是一个深度学习框架,他和机器学习一样,有其固定的解决问题的方式。其训练过程有固定的模式,一般如下:1.初始化模型参数2.输入训练数据3.在训练数据上验证模型4.计算损失5.调整模型参数重复转载 2017-05-15 00:52:43 · 768 阅读 · 0 评论 -
深度学习利器:TensorFlow实战
深度学习及TensorFlow简介深度学习目前已经被应用到图像识别,语音识别,自然语言处理,机器翻译等场景并取得了很好的行业应用效果。至今已有数种深度学习框架,如TensorFlow、Caffe、Theano、Torch、MXNet,这些框架都能够支持深度神经网络、卷积神经网络、深度信念网络和递归神经网络等模型。TensorFlow最初由Google Brain团队的研究员和工程师研发,目转载 2017-05-15 00:43:00 · 1234 阅读 · 0 评论 -
对抗神经网络之对抗卷积神经网络[2]
Abstract上一篇博文[1]简单介绍了对抗网络的理论和大概流程。其中所谓的对抗网络可以归结为unsupervised learning 或者 generative model。从无监督学习来进行feature representation,有k-means聚类算法,auto-encoders[2],以及09年的Deep belief networks等等。从生成模型的角度来说,我们需要转载 2017-05-14 10:33:58 · 1058 阅读 · 0 评论