A new deep convolutional neural network for fast hyperspectral image classification Review

A new deep convolutional neural network for fast hyperspectral image classification Review

Basically, this paper imply a 3D CNN.

Points 1:Three ways to apply CNN on remote sensing image
  1. Extract only spectral information: Nx1 dimension Vector, N represents the band of specture.
  2. Extract only spatial information: Consider neighboring pixels of original pixel.
  3. Fusion the above two models to improve accuracy.
Points 2: Proposal CNN:

Net structure from this paper

Points 3: Data processing

In image processing part, divide the who hyperspectral image into several dxdxn patches where d is the width and height of the batch which n is the total No. of bands.

Highlight:

in order to suppression overfitting and handle more information in each patch, this paper rise a simple idea to mirror the d/2 pixels outwards each edge pixels.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值