欧拉公式:零基础图解欧拉公式推导,小学二年级适用

欧拉公式的数形结合理解

1. 引言

  • 在B站上看到一个极好的证明欧拉公式的视频,推荐给大家,并写文章记录下自己的理解

https://www.bilibili.com/video/av301216122/?vd_source=1db9625b9b10dd5c0b79fbe79e3b9a91
数学上有句话,当一个公式中出现π时,一定要问自己那个圆在哪里?

  • “上帝公式”用极简的符号编织出深邃的关联。当指数函数e^(iθ)引入了iθ的调和,它不再是爆炸的增长曲线,而是化作单位圆上轻盈的旋转。这个等式最震撼的瞬间,是当θ=π时所有元素骤然收紧:自然常数e与圆周率π在复平面上相遇,旋转半周后精准地跌入-1的谷底,而一个朴素的"+1"便将万物归为虚无。数学中的五大神明——0和1构筑算术,i定义虚数,π丈量圆,e刻画自然增长——竟在此处完美画上等号!

  • 它撕开了不同领域的藩篱。指数的导数特性、复数的几何意义、三角函数的周期性,都在此达成共识。工程师用它解微分方程,物理学家用它描述波动,而每一个凝视公式的人,都能在抽象符号的共振中触碰到数学的统一性。这种美不依赖修辞堆砌,而是源自逻辑本身的清澈回响。

  • 上学的时候被各种知识轰炸,那会儿实在没有欣赏到欧拉公式的美,直到工作后重新学信号处理终于有所感悟,欧拉公式确实美的难以言表,但我词穷只会说卧槽,遂只好用AI帮我表达,希望读者也能感受到上帝公式的美。

2. 正文

  1. 欧拉公式: e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0

  2. 可以借助e的定义进行证明: e = lim ⁡ n → ∞ ( 1 + 1 n ) n e = \lim_{n \to \infty}(1 + \frac{1}{n})^n e=nlim(1+n1)n
    视频在给出e的定义时顺带给出了该极限形式的意义,就是计算存款利率收益,假设银行一年结算一次收益为(1+r),一年结算两次收益为(1+r/2)^2,当结算次数趋于无穷时极限就收敛于e^r。 e r = lim ⁡ n → ∞ ( 1 + r n ) n e^r = \lim_{n \to \infty}(1 + \frac{r}{n})^n er=nlim(1+nr)n

  3. 那么我们就可以借助e的极限定义来推导e^ipi, e i π = lim ⁡ n → ∞ ( 1 + i π n ) n = ? e^{i\pi} = \lim_{n \to \infty}(1 + \frac{{i\pi}}{n})^n=? eiπ=nlim(1+niπ)n=此时,式中涉及到了复数的乘法,即 ( a + b i ) ( c + d i ) = ( a c − a d ) + ( b d + b c ) i (a+bi)(c+di)=(ac-ad)+(bd+bc)i (a+bi)(c+di)=(acad)+(bd+bc)i
    但如果用这个公式来推导显然有点摸不到头脑了,而且我们是寻求一种数形结合的直观理解,所以我们需要的其实是复数的三角表示,即 ( a ( c o s α + i s i n α ) ) ( b ( c o s β + i s i n β ) ) = a b ( c o s ( α + β ) + i s i n ( α + β ) ) (a(cos\alpha + isin\alpha))(b(cos\beta + isin\beta)) = ab(cos(\alpha+\beta)+isin(\alpha+\beta)) (a(cosα+isinα))(b(cosβ+isinβ))=ab(cos(α+β)+isin(α+β))
    其几何意义就是复数的乘积等于辐角相加模相乘。复数相乘的几何意义

  4. 重新回到欧拉公式的推导,我们可以依次画出n=1、n=2、n=3…时的图像,在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    宏观上看就是矢量(1,0)不断地乘(1,iπ/n)最终画了一个圆指向了(-1,0),当然这样子画还不能“显然”,但当我们细看每次变化时,这个结果就是传说中的“显然”了,
    在这里插入图片描述
    当n较小时,矢量(1,iπ/n)的模较大,那么矢量(1,iπ/n)相乘后的模也较大,方向是逆时针旋转,从图像看就是三角形的斜边明显大于直角边
    在这里插入图片描述
    但当n较大时,矢量(1,iπ/n)的模较小,那么矢量(1,iπ/n)相乘后的模就比n较小时小,换句话就说就是每乘上一个(1,iπ/n)后几乎不改变原来的模长,而只有旋转的效果,从图像上看就是三角形的斜边越来越接近直角边。
    那么,当n->无穷时,每一个矢量(1,iπ/n)相乘的贡献就只有旋转一个极小度数的作用,而并不改变模长,这个角度为π/n(θ无穷小时tan(θ)≈θ),从图像上看就是三角形变成了扇形,而最终的结果就是矢量(1,0)旋转到了(-1,0)。

    n = 0:100;
    result = (1+1i*pi./n).^n;
    figure(1),scatter(real(result),imag(result));
    axis([-4 4 -4 4])
    grid on
    
    N = 100;
    process = nan(1,N);
    process(1) = 1;
    for i = 2:N
        process(i) = process(i-1)*(1+1i*pi./(N-1));
    end
    figure(2),scatter(real(process),imag(process));
    axis([-4 4 -4 4])
    grid on
    

    用matlab简单仿真看了看,加深印象
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  5. 视频中还给出一种方式去理解最终结果是-1,当n趋于无穷时,每个小三角形变成扇形,其弧长是π/n,半径是1(看第一个小三角,长边是(1,π/n)的实部1,短边是虚部π/n),n个小三角弧长就是π,利用弧长公式,那么这个圆弧就正好是个半圆,所以最终的结果就是-1。(这个理解也不错,但我觉得从矢量(1,iπ/n)相乘的几何意义去理解就已经非常“显然”了)
    在这里插入图片描述
    每一个小三角形的短边长度是π/n

  6. 关于无穷个矢量(1,iπ/n)相乘的贡献并不改变模长,这句话是成立的,视频里也给出了证明,但我高数学得不咋滴没看懂哈哈。
    在这里插入图片描述

  7. 推广一下,当π为任意角度θ时,每一个矢量(1,iθ/n)相乘的贡献为将矢量(1,0)旋转θ/n,而并不改变模长,即 e i θ = c o s θ + i s i n θ e^{iθ}=cosθ+isinθ eiθ=cosθ+isinθ

  8. 再推广一下,θ换成频率乘时间,信号处理的篇章就此展开。在这里插入图片描述

### 三角网格中的欧拉公式及其顶点间的关系 在计算共形几何中,研究者们利用现代几何拓扑理论与计算机科学相结合的方法探索复杂形状的表示和变换[^1]。对于三维建模而言,尤其是涉及到表面重建和平滑化等问题时,理解并运用好基本的拓扑性质至关重要。 #### 欧拉公式的定义及意义 针对二维闭合多边形或更广泛的可定向紧致无边界流形(如球体),存在一个重要而简单的拓扑不变量——欧拉特征数χ(V-E+F),其中V代表顶点数量、E为边的数量、F则是面片数目。当应用于简单凸多面体上时,该值恒等于2;而对于具有洞口或其他复杂结构的对象,则需依据具体情况调整计算方式[^2]。 #### 应用于三角网格的具体实例 考虑到实际应用场景下的模型往往由一系列相互连接的小平面组成即所谓的“三角网格”,此时可以采用如下形式表达上述关系: \[ \chi = V - E + F = 2(1-g) \] 此处g指代的是亏格(genus),用来描述物体内部孔隙的数量,在最常见的情形下(例如封闭曲面上没有任何穿刺点的情况)它就简化成了我们熟知的经典版本: \[ V - E + F = 2\] 此方程不仅揭示了几何对象本身的内在属性,同时也为我们提供了关于如何构建有效数据结构的重要线索。具体来说就是通过维持正确的邻接列表来确保每次修改都能保持整体的一致性和稳定性[^3]。 ```python def euler_characteristic(vertices, edges, faces): """ Calculate Euler characteristic of a mesh. Args: vertices (int): Number of vertices in the mesh. edges (int): Number of edges in the mesh. faces (int): Number of faces in the mesh. Returns: int: The calculated Euler characteristic value. """ return vertices - edges + faces ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值