欧拉公式的数形结合理解
1. 引言
- 在B站上看到一个极好的证明欧拉公式的视频,推荐给大家,并写文章记录下自己的理解
https://www.bilibili.com/video/av301216122/?vd_source=1db9625b9b10dd5c0b79fbe79e3b9a91
数学上有句话,当一个公式中出现π时,一定要问自己那个圆在哪里?
-
“上帝公式”用极简的符号编织出深邃的关联。当指数函数e^(iθ)引入了iθ的调和,它不再是爆炸的增长曲线,而是化作单位圆上轻盈的旋转。这个等式最震撼的瞬间,是当θ=π时所有元素骤然收紧:自然常数e与圆周率π在复平面上相遇,旋转半周后精准地跌入-1的谷底,而一个朴素的"+1"便将万物归为虚无。数学中的五大神明——0和1构筑算术,i定义虚数,π丈量圆,e刻画自然增长——竟在此处完美画上等号!
-
它撕开了不同领域的藩篱。指数的导数特性、复数的几何意义、三角函数的周期性,都在此达成共识。工程师用它解微分方程,物理学家用它描述波动,而每一个凝视公式的人,都能在抽象符号的共振中触碰到数学的统一性。这种美不依赖修辞堆砌,而是源自逻辑本身的清澈回响。
-
上学的时候被各种知识轰炸,那会儿实在没有欣赏到欧拉公式的美,直到工作后重新学信号处理终于有所感悟,欧拉公式确实美的难以言表,但我词穷只会说卧槽,遂只好用AI帮我表达,希望读者也能感受到上帝公式的美。
2. 正文
-
欧拉公式: e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0
-
可以借助e的定义进行证明: e = lim n → ∞ ( 1 + 1 n ) n e = \lim_{n \to \infty}(1 + \frac{1}{n})^n e=n→∞lim(1+n1)n
视频在给出e的定义时顺带给出了该极限形式的意义,就是计算存款利率收益,假设银行一年结算一次收益为(1+r),一年结算两次收益为(1+r/2)^2,当结算次数趋于无穷时极限就收敛于e^r。 e r = lim n → ∞ ( 1 + r n ) n e^r = \lim_{n \to \infty}(1 + \frac{r}{n})^n er=n→∞lim(1+nr)n -
那么我们就可以借助e的极限定义来推导e^ipi, e i π = lim n → ∞ ( 1 + i π n ) n = ? e^{i\pi} = \lim_{n \to \infty}(1 + \frac{{i\pi}}{n})^n=? eiπ=n→∞lim(1+niπ)n=?此时,式中涉及到了复数的乘法,即 ( a + b i ) ( c + d i ) = ( a c − a d ) + ( b d + b c ) i (a+bi)(c+di)=(ac-ad)+(bd+bc)i (a+bi)(c+di)=(ac−ad)+(bd+bc)i
但如果用这个公式来推导显然有点摸不到头脑了,而且我们是寻求一种数形结合的直观理解,所以我们需要的其实是复数的三角表示,即 ( a ( c o s α + i s i n α ) ) ( b ( c o s β + i s i n β ) ) = a b ( c o s ( α + β ) + i s i n ( α + β ) ) (a(cos\alpha + isin\alpha))(b(cos\beta + isin\beta)) = ab(cos(\alpha+\beta)+isin(\alpha+\beta)) (a(cosα+isinα))(b(cosβ+isinβ))=ab(cos(α+β)+isin(α+β))
其几何意义就是复数的乘积等于辐角相加模相乘。 -
重新回到欧拉公式的推导,我们可以依次画出n=1、n=2、n=3…时的图像,
宏观上看就是矢量(1,0)不断地乘(1,iπ/n)最终画了一个圆指向了(-1,0),当然这样子画还不能“显然”,但当我们细看每次变化时,这个结果就是传说中的“显然”了,
当n较小时,矢量(1,iπ/n)的模较大,那么矢量(1,iπ/n)相乘后的模也较大,方向是逆时针旋转,从图像看就是三角形的斜边明显大于直角边
但当n较大时,矢量(1,iπ/n)的模较小,那么矢量(1,iπ/n)相乘后的模就比n较小时小,换句话就说就是每乘上一个(1,iπ/n)后几乎不改变原来的模长,而只有旋转的效果,从图像上看就是三角形的斜边越来越接近直角边。
那么,当n->无穷时,每一个矢量(1,iπ/n)相乘的贡献就只有旋转一个极小度数的作用,而并不改变模长,这个角度为π/n(θ无穷小时tan(θ)≈θ),从图像上看就是三角形变成了扇形,而最终的结果就是矢量(1,0)旋转到了(-1,0)。n = 0:100; result = (1+1i*pi./n).^n; figure(1),scatter(real(result),imag(result)); axis([-4 4 -4 4]) grid on N = 100; process = nan(1,N); process(1) = 1; for i = 2:N process(i) = process(i-1)*(1+1i*pi./(N-1)); end figure(2),scatter(real(process),imag(process)); axis([-4 4 -4 4]) grid on
用matlab简单仿真看了看,加深印象
-
视频中还给出一种方式去理解最终结果是-1,当n趋于无穷时,每个小三角形变成扇形,其弧长是π/n,半径是1(看第一个小三角,长边是(1,π/n)的实部1,短边是虚部π/n),n个小三角弧长就是π,利用弧长公式,那么这个圆弧就正好是个半圆,所以最终的结果就是-1。(这个理解也不错,但我觉得从矢量(1,iπ/n)相乘的几何意义去理解就已经非常“显然”了)
每一个小三角形的短边长度是π/n -
关于无穷个矢量(1,iπ/n)相乘的贡献并不改变模长,这句话是成立的,视频里也给出了证明,但我高数学得不咋滴没看懂哈哈。
-
推广一下,当π为任意角度θ时,每一个矢量(1,iθ/n)相乘的贡献为将矢量(1,0)旋转θ/n,而并不改变模长,即 e i θ = c o s θ + i s i n θ e^{iθ}=cosθ+isinθ eiθ=cosθ+isinθ
-
再推广一下,θ换成频率乘时间,信号处理的篇章就此展开。