python深度学习基于pytorch代码1.6math与numpy对比

import time
import math
import numpy as np
x = [i * 0.001 for i in np.arange(1000000)]
start = time.perf_counter()
for i, t in enumerate(x):
    x[i] = math.sin(t)
    print("math.sin:", time.perf_counter()  - start)
    x = [i * 0.001 for i in np.arange(1000000)]
    x = np.array(x)
    start = time.perf_counter()
    np.sin(x)
    print("numpy.sin:", time.perf_counter() - start)
    x1 = np.random.rand(1000000)
    x2 = np.random.rand(1000000)
    tic = time.process_time()
    dot = 0
    for i in range(len(x1)):
        dot += x1[i]*x2[i]
    toc = time.process_time()
    print("dot = " + str(dot) + "\n for loop----- Computation time = " + str(1000*(toc - tic)) + "ms")
    tic = time.process_time()
    dot = 0
    dot = np.dot(x1, x2)
    toc = time.process_time()
    print("dot =" + str(dot) + "\n verctor version---- Computation time = " + str(1000*(toc - tic)) + "ms")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值