算法动态规划之最长公共子序列

问题描述:

一个给定的序列的子序列是在删去若干元素后得到的序列。给定两个序列X和Y,若另一序列Z是两个序列的子序列,则称其为二者的公共子序列。

最长公共子序列问题:给定两个序列,找出其最长公共子序列。

求解与分析:

    1.分析最优解的结构

穷举法是固然能算出结果的,可是计算时间将是2的n次幂,需要指数时间。

事实上这个问题是满足最优子结构性质,

记:
   Xi = <x1,x2,x3,....xi> 即X序列的前i个字符(1<= i <= m)(前缀)
   Yj = <y1,y2,y3,....yi> 即Y序列的前j个字符(1<= j <= m)(前缀)
   
   假定Z = <z1,z2,z3,...zk>是LCS(X,Y)中的一个。
   ·若xm = yn(最后一个字符相同),则不难用反正法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn,且显然有Zk-1∈LCS(Xm-1,Yn-1),即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X,Y))的长度等于LCS(Xm-1,Yn-1)的长度加1)。
   · 若xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y);类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。
 
    由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。

   也就是说,解决这个LCS问题,你要求三个方面的东西:
   1> LCS(Xm-1,Yn-1)+1;
   2> LCS(Xm-1,Y),LCS(X,Yn-1);
   3> max{LCS(Xm-1,Y),LCS(X,Yn-1)};

二、动态规划算法解LCS问题

2.1 最长公共子序列的结构
 
   最长公共子序列的结构有如下表示:
   
   设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>,则:
   1> 若 xm=yn,则 zk=xm=yn,且Zk-1是Xm-1和Yn-1的最长公共子序列; 
   2> 若 xm≠yn且 zk≠xm ,则 Z是 Xm-1和 Y的最长公共子序列;
   3> 若 xm≠yn且 zk≠yn ,则 Z是 X和 Yn-1的最长公共子序列;
   其中Xm-1=<x1, x2, …, xm-1>,Yn-1=<y1, y2, …, yn-1>,Zk-1=<z1, z2, …, zk-1>。

2.2 子问题的递归结构

   由最长公共子序列问题的最优子结构性质可知,要找出 Xm=<x1, x2, …, xm>和
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值