1.滚动数组是什么?
一个及其小巧的思维,数据结构都算不上,不过非常适用于某些问题节约空间.其实就是一个长度为2的循环队列的概念.
2.滚动数组有什么用?
在处理一些问题特别是DP这类问题时经常需要递推,用数组记录数据是必不可少的,然而n过大时开n*n的数组会爆栈,而滚动数组可以将空间缩为2*n.
可处理的问题多表现为多步的数据递推,而且每一步递推只会用到上一次递推的数据,此时就记得要用滚动数组优化空间.
3.滚动数组实现思路
正是因为每一步的递推只会用到上一步的数据,故而我们只需要2*n的空间就好了,一个n保存上次递推的数据,一个n保存本次递推的数据,本次递推完之后,本次递推自然就变成了下一次递推的上次递推,故而就是滚动的在利用这两个n的空间保存要用到的数据,不会用到的数据被我们在滚动的过程中覆盖了.
其实这个滚动数组只是常见的是长度2,长度无论为多少实际上都可以实现滚动!这里读者自己看懂了为2的在理解.
4.模版代码
const int len=2; //一般问题用到的长度都是2
const int maxn=100005;
int dp[maxn][len];
void solve(){
int now=0; //上层数据是二次下标为now的dp
for(int i=0;i<n;i++){
//这里通过dp[][now]的数据推出dp[][(now+1)%len]的数据
now=(now+1)%len; //滚动起来
}
}
5.基于某些问题
(1).斐波那契问题
斐波那契知道吧?f[1]=1,f[2]=1...f[n]=f[n-1]+f[n-2],现在我问你f[100000000]是多少,答案太大取模1000000007;
问题是我自己编造的,无来源,不过很经典,按照老式的数组递推肯定不行,爆栈.故而我们用长度3的滚动数组试试.
#include <stdio.h>
typedef long long ll;
const int len=3; //一般问题用到的长度都是2,不过斐波那契明显是3
const ll mod=1000000007;
ll dp[len];
ll solve(int t){
dp[1]=1;
dp[2]=1;
int now=1; //滚动的就是这个下标now
for(int i=3;i<=t;i++){
//这里通过dp[now]与dp[now+1]的数据推出dp[now+2]的数据,实际代码注意求余
dp[(now+2)%len]=(dp[now]+dp[(now+1)%len])%mod; //斐波那契的递推
now=(now+2)%len; //滚动起来
}
return dp[now];
}
int main(){
printf("%lld\n",solve(100000000));//其实这里并没有体现多少优化,只是斐波那契是典型的递推,而且只会使用到前两个数据,体会一下意思就好了
return 0;
}