【随缘一练】找出abb型字符串的个数

这篇博客介绍了如何通过三种不同的动态规划方法解决字符串中'abb'型子序列计数的问题。博主首先展示了三个for循环的解决方案,但由于时间复杂度过高导致超时。接着,博主提出两种动态规划优化方案,分别用O(n^2)和O(n)的时间复杂度实现了计算,最后一种优化方案的空间复杂度降低到了O(1)。博客还包含了示例输入和输出,以及代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持!
博主链接

题目

描述
leafee 最近爱上了 abb 型语句,比如“叠词词”、“恶心心”
leafee 拿到了一个只含有小写字母的字符串,她想知道有多少个 “abb” 型的子序列?
定义: abb 型字符串满足以下条件:

  • 字符串长度为 3 。
  • 字符串后两位相同。
  • 字符串前两位不同。

输入描述:
第一行一个正整数 n
第二行一个长度为 n 的字符串(只包含小写字母)
1 <= n <= 105

输出描述:
“abb” 型的子序列个数。
示例1

输入:
6
abcbcc

输出:
8
说明:
共有1个abb,3个acc,4个bcc

示例2

输入:
4
abbb

输出:
3


思路一:三个for循环搞定,但是提示超时

第一个for选择abb字符串中的第一个字符,然后第二个for确定第二个字符,同理第三个for确定最后一个字符。
这个时间复杂度就不说了O(n3),空间复杂度O(1)

#include<stdio.h>

int main()
{
    int n,res=0;
    scanf("%d",&n);
    getchar();
    char *s=(char*)malloc(n+1);
    gets(s);
    
    for(int i=0;i<n;++i)
    {
        for(int j=i+1;j<n;++j)
        {
            if(s[i]!=s[j])
            {
                for(int k=j+1;k<n;++k)
                {
                    if(s[j]==s[k])
                        res++;
                }
            }
        }
    }
    printf("%d",res);
    
    return 0;
}

思路二:动态规划

使用dp[i][26] (i从0开始)记录 [i+1,n-1] 之间每个字母出现的次数,之后我们利用数学中的排列 C n 2 = n ∗ ( n − 1 ) / 2 ! C_n^2=n*(n-1)/2! Cn2=n(n1)/2!计算出以s[i]开头的abb字符串的个数

#include<stdio.h>

int main()
{
    long long n,res=0;
    scanf("%lld",&n);
    getchar();
    char *s=(char*)malloc(n+2);
    long long (*dp)[26]=(long long*)malloc(sizeof(long long)*(n+2)*26);
    memset(dp,0,sizeof(long long)*(n+2)*26);
    gets(s);
    
    for(int i=n-1;i>=0;--i)
    {
        for(int j=0;j<26;++j)
            dp[i][j] = dp[i+1][j];
        ++dp[i][s[i]-'a'];
    }
    
    for(int i=0;i<n;++i)
    {
        for(int j=0;j<26;++j)
        {
            if(s[i]-'a' != j)
            {
                res += dp[i+1][j]*(dp[i+1][j]-1)/2;
            }
        }
    }
    printf("%lld",res);
    
    return 0;
}

时间复杂度O(n),空间复杂度O(n)


思路三:动态规划优化

在这里插入图片描述

#include<stdio.h>

int main()
{
    long long n,res=0;
    long long cnt[26]={0},dp[26]={0};
    scanf("%lld",&n);
    getchar();
    char *s=(char*)malloc(n+1);
    gets(s);
    
    for(int i=0;i<n;++i)
    {
        res+=dp[s[i]-'a'];
        dp[s[i]-'a']+=i-cnt[s[i]-'a'];
        ++cnt[s[i]-'a'];
    }
    
    printf("%lld",res);
    free(s);
    return 0;
}

时间复杂度O(n),空间复杂度O(1)


这里是从善若水的博客,感谢您的阅读💯💯💯


在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

从善若水

原创不易,感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值