python 深度学习(2) -- 神经网络回归模型

我们使用波士顿数据构建我们的神经网络回归模型,样本包含了 14 个变量的 506 个例子/观察 结果。波士顿数据包含在 sklearn 包中

from sklearn import datasets
boston = datasets.load_boston()
x,y = boston.data,boston.target

然后我们将数据进行标准化,在传统的统计分析中,通常将变量进行标准化,以使其分布近似为高斯分布。高斯分布具有一些不错的理论性质,使得模型表现更好。标准正态分布的平均值为 0,方差为 1

一种直观的标准化方法就是先从属性中减去平均值,然后除以该属性值的标准方差,例如对于属性 xi:

                                                                

或者可以考虑另外两个流行的标准化公式:

                                                          

还有一种方法能将属性缩放到给定的最大值和最小值之间,通常是[0,1]

                                                             

具体使用哪一个?只能通过实际实验确定。针对缩放到 [0,1] 之间的最后一个公式,可以用 sklearn 预处理模块中的 MinMaxScaler 进行处理。

from sklearn import preprocessing
x_MinMax = preprocessing.MinMaxScaler()
y_MinMax = preprocessing.MinMaxScaler()
import numpy as np
''' 将 y 转换成 列 '''
y = np.array(y).reshape(len(y),1)
x = x_MinMax.fit_transform(x)
y = y_MinMax.fit_transform(y)
''' 打印列平均值 共 13 列 '''
print x.mean(axis = 0)

''' 打印 x 中的缩放值,共 13 列'''
print x_MinMax.scale_

''' 打印 y 中的缩放值, 共 1 列 '''
print y_MinMax.scale_

''' 按二八原则划分训练集和测试集 '''
import random
from sklearn.cross_validation import train_test_split
np.random.seed(2018)
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.2)

安装 scikit-neuralnetwork 软件包

pip install scikit-neuralnetwork

使用 sknn.mlp 模块创建深度神经网络回归模型

from sknn.mlp import Regressor,Layer
''' 
创建模型 fit1,包含两个使用 sigmoid 激活函数的隐藏层
输出层使用线性激活函数,输出神经元的激活函数是隐藏层输出的加权和
random_state 参数用来再现相同的数据
学习率为 0.02 允许的最大迭代次数 n_iter = 10
'''
fit1 = Regressor(
        layers = [Layer("Sigmoid",units = 6),Layer("Sigmoid",units = 14),Layer("Linear")],
        learing_rate = 0.02,
        random_state = 2018,
        n_iter = 10)

# 拟合实际数据,训练属性在 x_train 中,目标存储在 y_train 中
print "fitting model right now"
fit1.fit(x_trian,y_train)

获取模型预测和度量性能

针对于回归问题,常用的度量方式就是计算目标(y)和预测值(^y) 之间误差平方的平均值。也就是均方差

                                                    

# 预测值
pred1_train = ft1.predict(x_train)
# 计算 MSE
from sklearn.metrics import mean_squared_error
mse_1 = mean_squared_error(pred1_train,y_train)
print "Train ERROR = ", mse_1

  • 7
    点赞
  • 92
    收藏
    觉得还不错? 一键收藏
  • 16
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值