矩阵消除游戏(牛客:NC200190)

文章讨论了一个矩阵中选择行或列以最大化和的问题,指出简单的贪心策略(每次选取最大行或列)并不总是最优解。通过举例说明,提出了修正策略,即枚举所有可能的行组合,然后对剩余的列进行贪心选择。给出的C++代码实现了这一方法,用于找到在限制选择行数k的情况下,矩阵的最大和。
摘要由CSDN通过智能技术生成

解题思路:

首先最容易想到的贪心策略就是每一回合取最大的行或者列,在数学的角度来看并不能证明其正确性,举一个反列证明错误

3 3 2

4 2 3

8 1 2

以该策略应该选第一列和第3列

但正解应该选择第一行和第二行

这个策略错的原因最主要是因为:每步不同的策略会影响接下来的策略,所以不能保证当前这一步的策略一定是最优的。

接下来我们在上面的策略发现一个规律,如果只能选行或者列,那么之前的策略的每一步一定是正确的(因为每一步不影响下一步),所以不妨我们枚举所有行的取法,再去贪心的选择最大的列

代码:

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int n, m, k, a[30][30] = { 0 };
bool cmp(int i, int  j)
{

    return i > j;
}
int f(int l)
{
    int b[30][30];//a的副本
    int target = 0;
    int tempk = k;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            b[i][j] = a[i][j];
        }
    }
    for (int i = 1; i <= n; i++)
    {
        if (l == 0)break;
        if (l & 1)
        {
            tempk--;
            for (int j = 1; j <= m; j++)
            {
                target += b[i][j];
                b[i][j] = 0;
            }
        }
        l = l >> 1;
    }
    if (tempk < 0)return -1;//处理选的行数大于k的情况
    if (tempk <= 0)
    {
        return target;
    }
    int lie[30] = { 0 };
    for (int i = 1; i <= m; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            lie[i] += b[j][i];
        }
    }
    sort(lie + 1, lie + 1 + m, cmp);
    for (int i = 1; i <= tempk; i++)
    {
        target += lie[i];
    }
    
    return target;
}
int main() {
    cin >> n >> m >> k;
    int sum = 0;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            cin >> a[i][j];
            sum += a[i][j];
        }
    }
    if (k >= n || k >= m)
    {
        cout << sum;
        return 0;
    }
    int maximum = 0;
    for (int i = 0; i <= ((1 << n) - 1); i++)//枚举行,注意选的行数大于k的情况
    {
        maximum = max(maximum, f(i));
    }
    cout << maximum;
}
// 64 位输出请用 printf("%lld")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值