解题思路:
首先最容易想到的贪心策略就是每一回合取最大的行或者列,在数学的角度来看并不能证明其正确性,举一个反列证明错误
3 3 2
4 2 3
8 1 2
以该策略应该选第一列和第3列
但正解应该选择第一行和第二行
这个策略错的原因最主要是因为:每步不同的策略会影响接下来的策略,所以不能保证当前这一步的策略一定是最优的。
接下来我们在上面的策略发现一个规律,如果只能选行或者列,那么之前的策略的每一步一定是正确的(因为每一步不影响下一步),所以不妨我们枚举所有行的取法,再去贪心的选择最大的列
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int n, m, k, a[30][30] = { 0 };
bool cmp(int i, int j)
{
return i > j;
}
int f(int l)
{
int b[30][30];//a的副本
int target = 0;
int tempk = k;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
b[i][j] = a[i][j];
}
}
for (int i = 1; i <= n; i++)
{
if (l == 0)break;
if (l & 1)
{
tempk--;
for (int j = 1; j <= m; j++)
{
target += b[i][j];
b[i][j] = 0;
}
}
l = l >> 1;
}
if (tempk < 0)return -1;//处理选的行数大于k的情况
if (tempk <= 0)
{
return target;
}
int lie[30] = { 0 };
for (int i = 1; i <= m; i++)
{
for (int j = 1; j <= n; j++)
{
lie[i] += b[j][i];
}
}
sort(lie + 1, lie + 1 + m, cmp);
for (int i = 1; i <= tempk; i++)
{
target += lie[i];
}
return target;
}
int main() {
cin >> n >> m >> k;
int sum = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
cin >> a[i][j];
sum += a[i][j];
}
}
if (k >= n || k >= m)
{
cout << sum;
return 0;
}
int maximum = 0;
for (int i = 0; i <= ((1 << n) - 1); i++)//枚举行,注意选的行数大于k的情况
{
maximum = max(maximum, f(i));
}
cout << maximum;
}
// 64 位输出请用 printf("%lld")