人眼对角点的识别通常是在一个局部的小区域或小窗口完成的。如果在各个方向上移动这个特征的小窗口,窗口内区域的灰度发生了较大的变化,那么就认为在窗口内遇到了角点。如果这个特定的窗口在图像各个方向上移动时,窗口内图像的灰度没有发生变化,那么窗口内就不存在角点;如果窗口在某一个方向移动时,窗口内图像的灰度发生了较大的变化,而在另一些方向上没有发生变化,那么,窗口内的图像可能就是一条直线的线段。如下图:
首先,将图像窗口平移[u,v]产生灰度变化的自相关函数如下:
其中窗口函数(权重矩阵)可以是平坦的,也可以是高斯的如下图(权重矩阵W(通常为高斯滤波器Gσ):
然而将平移后的式子进行泰勒展开如下:
则:
,
其中Ο(u2,v2)近似为0.故该式可以进一步简化。
由于是对局部微小的移动量 [u,v],所以可以近似得到下面忽略余项之后的表达式为一个二项式函数
其中,M的表达式如下,可由图像的导数求得:
,
即M=W*MI,其中
该卷积的目的是得到MI在周围像素上的局部平均。矩阵M又称为Harris矩阵。W 的宽度决定了在像素x 周围的感兴趣区域。像这样在区域附近对矩阵M取平均的原因是,特征值会依赖于局部图像特性而变化。如果图像的梯度在该区域变化,那么MI 的第二个特征值将不再为0。如果图像的梯度没有变化,M的特征值也不会变化。
忽略余项之后的表达式为一个二项式函数,然而二项式函数的本质上就是一个椭圆函数,椭圆的扁率和尺寸是由M(x,y)的特征值λ1、λ2决定的,椭圆的方向是由M(x,y)的特征矢量决定的,如下图所示,椭圆方程为:
椭圆函数特征值与图像中的角点、直线(边缘)和平面之间的关系如下图所示。共可分为三种情况:
- 图像中的直线。一个特征值大,另一个特征值小,λ1>λ2或λ2>λ1。自相关函数值在某一方向上大,在其他方向上小。
- 图像中的平面。两个特征值都小,且近似相等;自相关函数数值在各个方向上都小。
- 图像中的角点。两个特征值都大,且近似相等,自相关函数在所有方向都增大。
通过M的两个特征值λ1和λ2的大小对图像点进行分类:
如果λ1和λ2都很小,图像窗口在所有方向上移动都无明显灰度变化。
由于我们是通过M的两个特征值的大小对图像进行分类,所以,定义角点相应函数R:
其中k为经验常数,一般取k=0.04~0.06。为了去除加权常数κ,我们通常使用商数detM/(traceM)2作为指示器。:所以,上图可以转化为:
其中:
• R 只与M的特征值有关
• 角点:R 为大数值正数
• 边缘:R 为大数值负数
• 平坦区:R 为小数值
在判断角点的时候,–对角点响应函数R进行阈值处理:R > threshold,提取R的局部极大值。