插值法

1.插值法定义

设y=f\left ( x \right )在区间[a,b]上的定义,且

a <= x0 <= x1 ... <= xn <= b。且y_{i} = f\left ( x_{i} \right ),(i = 1,2,....,n)。

若存在不大于n次多项式p(x) = a_{0} + a_{1}x + a_{2}x^{2} + \cdot \cdot \cdot + a_{n}x^{n}使得p\left ( x_{i} \right ) = y_{i},  i = 1,2,....,n。

则p(x)称为插值多项式。

插值节点:x0 , x1,  ..., xn.

插值区间:[a,b].

插值函数:p(x)

插值条件:p\left ( x_{i} \right ) = y_{i},    i = 1,2,....,n.

插值法:求取p(x)的方法。如:

(1).若p(x)为多项式,则为多项式插值法。

(2).若p(x)为分段函数,则为分段插值法。

(3).若p(x)为三角多项式,则为三角插值法。

2.插值多项式的唯一性

           由插值条件可知:

                a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + \cdot \cdot \cdot + a_{n}x_{0}^{n} = y_{0}

                  ...................

                a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \cdot \cdot \cdot + a_{n}x_{n}^{n} = y_{n}

由范德蒙行列式可知V_{n}\left ( x_{0},x_{1},\cdot \cdot \cdot x_{n} \right ) = \prod_{0<=i<j<=n}^{n}\left ( x_{j}-x_{i} \right )\neq 0   ,其中x_{i} \neq x_{j};

故上述方程组存在唯一解,即n次多项式p(x)唯一存在。

3.插值方法

3.1  拉格朗日插值

(1).拉格朗日多项式

          L_{n}\left ( x \right ) = y_{0}l_{0}\left ( x \right ) + y_{1}l_{1}\left ( x \right ) + \cdot \cdot \cdot y_{n}l_{n}\left ( x \right ),l_{i}\left ( x \right ) = \prod_{j\neq i,j=0}^{n}\tfrac{x-x_{j}}{x_{i}-x_{j}}

当且仅当x = x_{i}时,l_{i}\left ( x_{i} \right ) = 1,否则为其值0。

(2).插值余项

R_{n}\left ( x \right ) = \frac{f^{\left ( n+1 \right )\left ( \xi _{x} \right )}}{\left ( n+1 \right )!}\prod_{i = 0}^{n}\left ( x-x_{i} \right ).

证明:

截断误差:R_{n}\left ( x \right ) = f\left ( x \right ) - L_{n}\left ( x \right ).可知R_{n}\left ( x \right )至少存在n+1个零点,可得\rightarrow R_{n}\left ( x \right ) = Q\left ( x \right )\prod_{i=0}^{n}\left ( x-x^{_{i}} \right )

G\left ( t \right ) = R_{n}\left ( t \right )-Q\left ( x \right )\prod_{i=0}^{n}\left ( t-x_{i} \right ).由G(t)存在x0,x1,...,xn,x共n+2个零点,则G(t)有n+1次导为0。化简可得

Q\left ( x \right ) = \frac{f^{\left ( n+1 \right )\left ( \xi _{x} \right )}}{\left ( n+1 \right )!}\RightarrowR_{n}\left ( x \right ) = \frac{f^{\left ( n+1 \right )\left ( \xi _{x} \right )}}{\left ( n+1 \right )!}\prod_{i = 0}^{n}\left ( x-x_{i} \right )。证毕。

(3)证  \sum_{i=0}^{n}l_{i}(x) = 1

证明:令f\left ( x \right )\equiv 1.

L_{n}\left ( x \right ) = y_{0}l_{0}\left ( x \right ) + y_{1}l_{1}\left ( x \right ) + \cdot \cdot \cdot y_{n}l_{n}\left ( x \right )= l_{0}\left ( x \right ) + l_{1}\left ( x \right ) + \cdot \cdot \cdot l_{n}\left ( x \right )= 1

证毕。

(4)证l_{0}(x),l_{1}(x),....,l_{n}(x)线性无关。

证明:设存在\lambda _{0}\lambda _{1},...,\lambda _{n}。使得\lambda _{0}l_{0}\left ( x \right )+\lambda _{1}l_{1}\left ( x \right )+...+\lambda _{n}l_{n}\left ( x \right )= 0.

P\left ( x \right )=\lambda _{0}l_{0}\left ( x \right )+\lambda _{1}l_{1}\left ( x \right )+...+\lambda _{n}l_{n}\left ( x \right )= 0。则:

P\left ( x_{0} \right )=\lambda _{0}= 0

P\left ( x_{1} \right )=\lambda _{1}= 0

...........

P\left ( x_{n} \right )=\lambda _{n}= 0.证毕。

3.2 牛顿插值

(1).牛顿插值多项式

N_{n}\left ( x \right )=N_{n-1}\left ( x \right )+c_{n}\left ( x-x_{0} \right )\left ( x-x_{1} \right )\cdot \cdot \left ( x-x_{n-1} \right)=c_{0}+c_{1}\left ( x-x_{0} \right )+\cdot \cdot \cdot +c_{n}\left ( x-x_{0} \right )\left ( x-x_{1} \right )\cdot \cdot \left ( x-x_{n-1} \right)c_{i}\left ( x \right )=f[x_{0},x_{1},\cdot \cdot \cdot ,x_{i}]

其中零阶差商f[x_{0}]=c_{0},

                     f[x_{0},x_{1},\cdot \cdot \cdot ,x_{i}]=\sum_{j=0}^{i}\frac{f\left ( x_{j} \right )}{\left ( x^{_{j}}-x_{0}\cdot \cdot \cdot \left (x_{j}-x_{i} \right ) \right )}= \frac{f^{\left ( i \right )}\left ( \xi \right )}{i!}称为i阶差商。

(2).余项

R_{n}\left ( x \right ) = f[x,x_{0},x_{1},\cdot \cdot \cdot ,x_{n}]\prod_{i=0}^{n}\left ( x-x_{i} \right )=\frac{f^{\left ( n+1 \right )}\left ( \xi \right )}{(n+1)!}\prod_{i=0}^{n}\left ( x-x_{i} \right )

解:1.    f[x] = f[x_{0}] + f[x,x_{0}](x-x_{0})

       2.    f[x,x_{0}] = f[x_{0},x_{1}] + f[x,x_{0},x_{1}](x-x_{1})

........................

      n+1.    f[x,x_{0},x_{1},\cdot \cdot \cdot ,x_{n-1}] = f[x_{0},x_{1},\cdot \cdot \cdot ,x_{n}] + f[x,x_{0},x_{1},\cdot \cdot \cdot ,x_{n}](x-x_{n})

由上述n+1个等式累加消元可得;

f(x)= f(x_{0})+f[x_{0},x_{1}](x-x_{0}) +\cdot \cdot \cdot +f[x_{0},x_{1},\cdot \cdot \cdot ,x_{n}](x-x_{0})(x-x_{1})\cdot \cdot \cdot (x-x_{n-1})+ {\color{Red} f[x,x_{0},x_{1},\cdot \cdot \cdot ,x_{n}](x-x_{0})(x-x_{1})\cdot \cdot \cdot (x-x_{n})}证毕。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值