Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm’s runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
解1:二分查找,找到目标记录其位置mi,否则返回[-1,-1]。然后分别移动指针在[lo,mi]、[mi,hi]之间找target的起始位置。
public class Solution {
public int[] searchRange(int[] nums, int target) {
int lo = 0;
int hi = nums.length - 1;
int mi = 0;
while(lo <= hi){
mi = (lo + hi)/2;
if (nums[mi] == target) break;
else if (nums[mi] > target){
hi = mi - 1;
}else{
lo = mi + 1;
}
}
if (hi < lo) return new int[]{-1,-1};
while (nums[lo]<target) lo++;
while (nums[hi]>target) hi--;
return new int[]{lo,hi};
}
}
解2:根据解1,考虑一种情况,如果在第一次二分查询的时候,nums[mi] = target,显然后面移动指针的时间复杂度很大O(n)。我们可以考虑在二分查询找到mi之后,在[lo,mi]、[mi,hi]继续使用二分查询来找起始点。
public class Solution {
public int[] searchRange(int[] nums, int target) {
int lo = 0;
int hi = nums.length - 1;
int mi = 0;
int[] result = {-1,-1};
int loc,high;
while(lo <= hi){
mi = (lo + hi)/2;
if (nums[mi] == target) break;
else if (nums[mi] > target){
hi = mi - 1;
}else{
lo = mi + 1;
}
}
if (hi < lo) return result;
loc = mi;//记录命中的位置
high = hi;
//查找命中的起始位置
hi = mi;
while (lo<=hi){
mi = (lo+hi)/2;
if (nums[mi] == target) hi = mi-1;
else lo = mi+1;
}
result[0] = lo;
//查找命中的结束位置
lo = loc;
hi = high;
while (lo<=hi){
mi = (lo+hi)/2;
if (nums[mi] == target) lo = mi+1;
else hi = mi -1;
}
result[1] = hi;
return result;
}
}