Week10 作业 B - LIS & LCS

东东有两个序列A和B。
他想要知道序列A的LIS和序列AB的LCS的长度。
注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
Input
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
Output
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
解题思路:
最长严格上升子序列:
状态:定义 f i 表示以 ai 为结尾的最长上升序列的方程。
初始化:f = 1,即:f数组全部初始化为1
转移过程:fi=max{fi,fj+1(j<i且aj<ai)}
输出答案:max{f[i], i=1…n}
最长公共子序列:
状态:假设 f[i][j] 为 a1 ,a2 , …, ai 和b1 , b2 , …, bj 的 LCS 长度
初始 f[1][0]=0;f[0][1]=0;f[0][0]=0;
转移方程:1.当 ai==bj 时,f[i][j]=f[i-1][j-1]+1 2.否则 f[i][j]=max(f[i-1][j], f[i][j-1])
输出答案:f[n][m]

#include<cstdio>
#include<algorithm>
using namespace std;
int n,m,ans1=1,ans2,a[5050],b[5050],f1[5050],f2[5050][5050];
int main()
{
	scanf("%d %d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		f1[i]=1;
	}
	for(int i=1;i<=m;i++)
	   scanf("%d",&b[i]);
	for(int i=2;i<=n;i++)
	{
		for(int j=1;j<i;j++)
		{
			if(a[i]>a[j])
			 f1[i]=max(f1[j]+1,f1[i]);
		}
		ans1=max(ans1,f1[i]);
	}
	f2[1][0]=0,f2[0][1]=0,f2[0][0]=0;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		  if(a[i]==b[j])    f2[i][j]=f2[i-1][j-1]+1;
		  else f2[i][j]=max(f2[i][j-1],f2[i-1][j]);
	}
	printf("%d %d\n",ans1,f2[n][m]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值