- 博客(62)
- 收藏
- 关注
原创 当卷积作用于信号处理
为什么卷积可以作用于以上场景,其一是信号(声音、振动等)的突变特征(如人声频段、轴承冲击)往往在时域或频域呈现局部集中性,而卷积的滑动窗口机制天然适合捕捉这种局部特性。其二是通过人为或数据驱动的核(针对特性)设计,在噪声中提取可表征因果性、相关性、周期性的序列。
2025-06-12 10:46:44
81
原创 数据信号处理方法三板斧
针对数据信号处理,首先要先选择合适的处理方法,在实际应用中,通常三板斧都要上,分阶段处理使得信号表现出“理想”特性。先通过异常值处理剔除冲击分量,再利用时序预测+最优估计修正系统误差(如卡尔曼滤波),最后通过平滑技术抑制随机噪声。三个步骤需根据数据特征(高斯/非高斯、线性/非线性)灵活组合。最终目标是从噪声中还原真实物理量,而非单纯追求平滑与美观。
2025-06-12 10:17:44
196
原创 大模型总“断片”?聊聊AI连续跨轮对话中的“健忘症”怎么来的,用Transformrer怎么修
工具:ima问题:AI完全断片,把健忘体现的淋漓尽致。就像在工作中和某种人对话,前一秒还在开会说这个协议没有体现对数据精度损失的考虑,他接着给你说那就按你喜欢的来的那种🍐🎼感。
2025-06-11 14:36:11
686
原创 C2f模块 vs Darknet-53——YOLOv8检测效率的提升
对比项C2f模块 (YOLOv8)结构核心残差块串联梯度分流 + 跨阶段参数复用计算效率较高复杂度更低计算量(优化30%+)精度提升基础多尺度检测更高mAP(+15-20%)适用场景通用目标检测实时高精度检测任务YOLOv8通过C2f模块重新设计了Backbone,在速度与精度之间达到更优平衡。注:数据参考自Ultralytics官方报告和开源代码实现。
2025-06-11 10:47:12
136
原创 5个常用的主干网络模型
VGG证明深度堆叠,ResNet突破深度限制,Darknet优化实时性,MobileNet/ShuffleNet专攻速度与轻量化。物极必反,不见出路(深度)就回头找出路(残差),网络设计也在轮回,最终走向了好用(效率优先)为先的“实用主义”之路上。
2025-06-11 09:45:27
664
原创 云计算——弹性云服务器(ECS)和裸金属服务器(BMS)
在云计算基础设施领域,**弹性云服务器(ECS)和裸金属服务器(Bare Metal Server,BMS)**是最核心的两类算力产品。前者通过虚拟化技术将物理资源池化,后者直接提供物理机级别的算力。本文将从技术本质、核心差异、适用场景等维度展开对比,帮助企业和开发者找到最适合自身业务的算力方案。ECS和裸金属服务器本质是云时代算力供给的两种形态ECS像"水电煤",灵活便捷,适合大多数通用场景;裸金属服务器像"工业发动机",性能强劲,适合对算力有极致要求的场景。
2025-06-10 13:27:10
986
原创 从微信读书后台架构看RAG知识召回架构
首行文章链接-图6.1微信读书的RAG检索方案,其核心点在于看重前端用户体验,设计分级索引架构,数据先通过IndexBuilder的“加工线”变成向量、分词等索引,存进COS仓库;当用户发起搜索时,RecallSvr同时从MemSearch(内存快查)、COS的不同货架(向量/分词/正排)、ES(专业检索)调取数据,综合排序后返回结果,达到高效和精准的目标。
2025-06-06 10:57:19
880
原创 云原生玩法三问:构建自定义开发环境
流水线(pipeline)实现通过.cnb.yml实现声明式流水线流水线主要能力:能力维度实现方式业务价值阶段隔离分离 build/deploy 阶段隔离构建环境、运行环境条件触发rules 匹配分支/tag测试环境自动部署生产制品管理推送 Docker 镜像至 CNB 制品库版本追溯,环境一致。
2025-06-06 10:20:21
748
原创 从“remote rejected”看git角色区别,Maintainer和Devoloper
权限能力DeveloperMaintainerOwner创建项目✅✅✅创建分支❌✅✅推送代码到现有分支✅✅✅删除分支❌✅✅合并请求管理✅ (创建/评论)✅ (审核/合并)✅保护分支设置❌✅✅添加/删除项目成员❌❌✅删除仓库❌❌✅CI/CD流水线配置❌✅✅。
2025-06-03 17:36:05
789
原创 git管理
当一个程序员(不管是什么方向的,C++/C/python等)不停的产生代码时,风险一开始就站在了代码背后,类似的问题有送审前夕发现最新改的论文丢了,实验跑出来那一刻要出图的时候发现这个数据不是最新处理过的……相信当过几年学术/工作🐮🐴的同类都有体会。大概是在工作后才开始正视成果的管理科学这件事,一来是,学生时代几乎未参与过大型的工程项目,对管理的需求不是那么迫切;二来是,搞出成果就占据了大部分的精力,谁要给我说分出精力学习怎么管理成果……眼前飘过个凡尔赛的货版本控制代码回溯差异对比分支管理并行开发功能隔
2025-06-03 13:34:33
849
原创 Ubuntu 下同名文件替换后编译链接到旧内容的现象分析
在使用 Ubuntu 操作系统编译程序时,常常会遇到一个问题:当我们替换同名文件内容后,若不改变当前命令行目录,再次编译时,系统实际编译的仍是被覆盖前的旧文件内容。
2025-05-30 22:48:14
498
原创 云原生 Cloud Native Build (CNB)使用初体验
体验下来,有几点值得说一说cnb环境启动速度比较快内置了一些镜像加速服务,包下载和Fork速度比较快预装了自家的AI编程助手CodeBuddy,开箱即用后续计划玩一下CNB的流水线功能,看如何利用其自动化能力来优化CI/CD流程。整体来说,CNB作为云原生开发平台,在开发效率和协作体验上都有亮眼的表现,值得持续关注和使用。
2025-05-30 16:36:41
1388
原创 重说话题“如何写好一份技术文档”
在符号学视角下,技术创作本质是符号系统的构建。特征程序代码技术文档载体形式机器可执行的符号人类可读的符号核心功能实现业务逻辑传递设计思想演化规律需要持续重构需要持续更新质量指标性能/健壮性清晰度/完整性技术文档的价值远不止于记录代码逻辑,它是团队协作的基石,是知识传承的载体,更是个人成长的阶梯。当我们摒弃"代码自解释"的幻想,拥抱"文档即代码"的理念时,我们实际上是在构建一个可持续发展的技术生态。
2025-05-29 19:54:53
259
原创 从AI幻觉看我的“意图”与领导说的“万无一失”
AI幻觉是指大语言模型在生成内容时,基于概率分布“猜测”最可能的答案,却产生看似合理但实际错误或虚构的信息。这种现象本质是意图传达与技术实现间的四个主要偏差AI幻觉与“万无一失”的冲突,本质是“概率世界”与“确定需求”的碰撞。所有输出都是草案:无论是AI生成的代码、文案,还是团队内部提出的“完美方案”,都需通过“小范围测试-数据验证-用户反馈”的迭代流程去伪存真;责任需要显性化。
2025-05-28 21:46:21
456
原创 同源“平滑思想”的问题解法:正则化与拉普拉斯平滑
正则化与拉普拉斯平滑,一个是机器学习的“参数约束工具”,一个是概率模型的“分布修正技术”,看似分属不同领域,实则共享“平滑思想”的内核——通过调整目标函数或统计量,对极端情况进行缓和,使模型或分布更接近真实规律。
2025-05-28 11:02:20
1300
原创 线性回归中标准方程法求逆失败的解法:正则化
当设计矩阵XTXX^T XXTX不可逆时,标准方程法因无法计算逆矩阵而失效。正则化通过向目标函数添加惩罚项,将原矩阵XTXX^T XXTX替换为XTXλIXTXλI,使其重新可逆,同时控制模型复杂度,提升泛化能力。对于线性回归任务,掌握正则化方法是解决“矩阵不可逆”问题的关键技术。实际应用中,需根据数据特点选择L1或L2正则化,并通过交叉验证调整正则化系数,确保模型在避免过拟合的同时保持良好的预测能力。
2025-05-28 10:53:42
1167
原创 零概率问题的解法:拉普拉斯平滑
拉普拉斯平滑的核心,是对“现实世界不确定性”的敬畏。数据中没有出现的事件,不代表概率为0;模型的“认知范围”,不应被训练数据局限。当然,拉普拉斯平滑也存在局限性(如当词汇表极大时,α⋅∣V∣α⋅∣V∣可能导致分母膨胀,稀释概率精度),因此在实际应用中,我们常结合其他技术(如Good-Turing平滑、Kneser-Ney平滑)进一步优化。拉普拉斯平滑不仅是“解题方法”,更是理解“用数学建模现实世界”的一种思想方向。
2025-05-28 10:38:54
684
原创 从万有引力到深度学习,认识模型思维
从牛顿发现万有引力定律到现代深度学习的崛起,“模型思维”始终是人类理解世界、解决问题的核心工具。它不仅是科学研究的基石,更是技术创新的底层逻辑。本文将从科学史、技术应用、认知效率等角度,系统阐述掌握模型思维的必要性。
2025-05-26 16:35:56
809
原创 深度学习中的卷积和反卷积
f∗gn∑k−∞∞fkgn−kf∗gnk−∞∑∞fkgn−k翻转平移:卷积核先水平/垂直翻转再进行滑动计算积分变换本质:表征函数f与g重叠部分的乘积积分滑动平均推广:当g为区间指示函数时,卷积即滑动平均数学理论深化:从离散卷积到群上卷积的泛化硬件协同优化:TensorCore对3×3卷积的特殊加速跨领域融合:在药物动力学IVIVC模型中的应用创新“卷积是特征提取的基石,反卷积是想象力的翅膀” —— 计算机视觉领域谚语。
2025-05-26 11:54:25
1757
原创 AI模型:从黑盒到灰盒,还不是白盒
当前的模型(灰盒)通过可解释性技术与流形理论,在性能与透明度间进行权衡取舍,但模型本质仍是局部解释与经验的结合。未来的模型最终要实现全局可验证,也许会从数学理论与新型计算范式(如神经符号系统、可微逻辑推理)切入。
2025-05-23 11:49:34
289
原创 (视觉)分类、检测与分割在不同网络中的设计体现
分类网络:从AlexNet、VGG到ResNet,网络深度不断增加,残差连接的引入解决了深层网络的训练难题,使网络能够学习更抽象和判别性的特征。检测网络:从两阶段的R-CNN系列到单阶段的YOLO系列,网络设计注重平衡精度与速度,ResNet等分类网络常被用作特征提取骨干。分割网络:从FCN、U-Net到DeepLab系列,网络设计强调保持空间信息和多尺度特征融合,跳跃连接和编码器-解码器结构是关键设计。
2025-05-22 13:46:59
813
原创 看AlexNet,ResNet,谈基础网络的进化特点
基础网络的进化围绕特征提取和稳定训练进行,主要说明了2点:纵然是network有黑盒子特性,但是设计和优化的方向依然要朝着精细化的方向走,也许现在它还是个黑盒子,但是未来可能未必,不被证明的东西未必不能走在应用前沿,毕竟实践了;精细的改动会在模型领域得到较大的效果提升,ResNet通过残差学习这一看似简单的结构创新,解决了深层网络训练的世界性难题,证明了在深度学习领域,精巧的设计往往比盲目的堆叠更有效。
2025-05-22 11:51:27
429
原创 分治思想在算法(目标检测)中的体现
分治思想作为目标检测算法的核心设计哲学,已从早期的硬编码分治策略发展为数据驱动自适应分治。其与注意力机制、神经架构搜索等新兴技术的结合,将持续推动目标检测领域的创新发展。
2025-05-20 10:27:47
1058
原创 现在的AI应用距离通用agent差的那点儿意思
从生成力到行动力的跨越,正是当前AI应用与通用Agent之间最关键的那"点儿意思”。Pokee.ai 朱哲清:用 RL 搭建智能体的「骨骼与神经」| AI 产品十人谈。
2025-05-08 12:23:34
953
原创 3中AI领域的主流方向:预测模型、强化学习和世界模型
近年来,人工智能(AI)技术飞速发展,涌现出多种不同的技术路线。其中,预测模型(如大语言模型)、强化学习(RL)和世界模型(World Models) 代表了三种较大影响力的研究方向。文本生成(如ChatGPT、文心一言)机器翻译(如Google Translate)内容推荐(如短视频、电商推荐)游戏AI(如AlphaGo、OpenAI Five)机器人控制(如波士顿动力)自动驾驶(如Waymo、Tesla)视频预测(如预测下一帧画面)机器人仿真(如模拟物理交互)自动驾驶感知(如理解交通场景)
2025-05-08 11:45:19
438
原创 coze搭建workflow,提取url内容插入飞书多维表格
数据流:开始(input:url)→提取文本内容(节点:插件,如下图)→提取目标文本内容(节点:llm)→飞书多维表格(节点:插件,如下图)→结束。1.打开coze,搭建agent,新建workflow,插入完整节点,如下图。添加后,在agent系统提示词中添加调用prompt(以下是我的部分提示词)搭建agent提取网页信息,生成资讯速览记录,插入飞书多维表格。说明:本文描述简单,适合有一定AI工具经验,详细描述可参考。调试成功后,进行发布,工作空间资源库可看到。插入多维表格成功后,可在节点输出出看到。
2025-04-29 17:32:02
544
原创 继续,ima应用
在设置ima为默认web浏览器后,可以直接打开飞书云文档,左边编辑文档,右边用ai助手,直接问答、生成、分析等一揽子处理,但是不能一键插入,希望后期可以。重要的是,这3种页面打开的AI对话框互不干扰,而且左边是信息源,右边是智能分析,上下文互相不污染,使用体验👍👍👍。
2025-04-23 11:49:34
224
原创 n8n和dify,工具角色?什么区别?
两者在AI开发生态中形成互补:n8n擅长连接异构系统构建宏观业务流程,Dify专注释放LLM潜力于垂直场景。企业可根据需求组合使用——例如用n8n调度数据管道,再通过Dify调用数据,通过LLM生成个性化推荐或自动化报告。
2025-04-22 11:07:59
393
原创 用AI无差别转换技术协议到生产工艺
该方案已在某汽车零部件企业试点,成功将新能源电机壳体的工艺设计时间从72小时压缩至18分钟。需根据具体行业需求调整工艺逻辑库参数。
2025-04-09 14:26:01
506
原创 使用cloud studio部构建一个语音交互Agent
默认情况下,Streamlit 只允许本地访问(127.0.0.1),设置为 0.0.0.0 后,允许外部设备(如局域网或公网)通过主机 IP 访问服务。语音交互的优点:语音交互方式提供了显著的用户体验优势,其核心价值在于拉低交互门槛,用户通过自然语音即可完成操作,无需额外学习成本。遇到的问题是,第4步,访问URL一直显示灰色界面,打开浏览器开发者模式,定位问题是websocket访问失败。运行以下代码(端口可自定义,cloud studio 的工作空间未设网络的安全组规则)。构建voice agent。
2025-04-09 14:21:00
380
chatgpt-academic自解读分析报告(gpt-4o-mini model,md格式)
2024-08-12
开源的商业价值是什么(相关搜索:操作系统)
2025-04-29
想做个功能模块的知识图谱,推荐个软件
2024-12-24
TA创建的收藏夹 TA关注的收藏夹
TA关注的人