大组合数取模-卢卡斯定理

首先,Lucas(卢卡斯)定理是什么?有什么用?

Lucas定理是用来求 C(n,m) mod p,p为素数的值(注意:p一定是素数)

有人会想,C(n,m)不能用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式来递推吗?

( 提示:C(n, m) mod p = n!/(m!(n - m)!) mod p )



可以是可以。但当n,m,p都很大时,你递推所用的时间就会很爆炸了。所以,这就需要用到Lucas定理来解决了。

因此,Lucas定理用来解决大组合数求模是很有用的



注意:Lucas定理最大的数据处理能力是p在10^5左右,不能再大了。再大的话,也是可以求的

表达式:C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p。(可以递归)

递归方程:(C(n%p, m%p)*Lucas(n/p, m/p))%p。(递归出口为m==0,return 1)


-----------------------------------------------------------------------

Lucas定理定义

这里我们令n=sp+q , m=tp+r .(q ,r ≤p)

 那么: 


在编程时你只要继续对 
 
 调用Lucas定理即可。
代码可以递归的去完成这个过程,其中递归终点为 t = 0  )
(时间复杂度 O(logp(n)*p) :)

-------------------------------------------------------------------------------------------

Lucas定理 证明
首先你需要这个算式其中f > 0&& f < p。
然后(1 + x) nΞ(1 + x) sp+q Ξ( (1 + x)p)s· (1 + x) q Ξ(1 + xps· (1 + x) q(mod p) 

所以得(1 + x) sp+q  
我们求右边的 
 
  的系数为:
求左边的 
 
 为:
通过观察你会发现当且仅当i = t , j = r ,能够得到 的系数,及
所以,得证。
--------------------------------------------------------------------------------------------------
我再次将它公式化一下。
For non-negative integers m and n and a prime p, the following congruence relation holds:

where

and

are the base  p  expansions of  m  and  n  respectively.
已知C(n, m) mod p = n!/(m!(n - m)!) mod p。显然是除法取模,这里又要用到m!(n-m)!的逆元。
求逆元(此处不详细说明了(ˇˍˇ) )。。。

已知(a, p) = 1,则 ap-1 ≡ 1 (mod p),  所以 a*ap-2 ≡ 1 (mod p)。

也就是 (m!(n-m)!)的逆元为 (m!(n-m)!)p-2 。


按照上面的思路就可以写出Lucas定理的代码了:
参考代码:
[cpp]  view plain  copy
 print ?
  1. #include<bits/stdc++.h>  
  2. using namespace std;  
  3. typedef long long ll;  
  4. const int N =1e5;  
  5. ll n, m, p, fac[N];  
  6. void init()  
  7. {  
  8.     int i;  
  9.     fac[0] =1;  
  10.     for(i =1; i <= n; i++)  
  11.         fac[i] = fac[i-1]*i % p;  
  12. }  
  13. ll q_pow(ll a, ll b)  
  14. {  
  15.     ll  ans =1;  
  16.     while(b)  
  17.     {  
  18.         if(b &1)  ans = ans * a % p;  
  19.         b>>=1;  
  20.         a = a*a % p;     
  21.     }  
  22.     return  ans;  
  23. }  
  24.   
  25. ll C(ll n, ll m)  
  26. {  
  27.     if(m > n)  return 0;  
  28.     return  fac[n]*q_pow(fac[m]*fac[n-m], p-2) % p;  
  29. }  
  30.   
  31. ll Lucas(ll n, ll m )  
  32. {  
  33.     if(m ==0)  return 1;  
  34.     else return  (C(n%p, m%p)*Lucas(n/p, m/p))%p;  
  35. }  
  36.   
  37. int main()  
  38. {  
  39.     int t;  
  40.     scanf("%d", &t);  
  41.     while(t--)  
  42.     {  
  43.         scanf("%I64d%I64d%I64d", &n, &m, &p);  
  44.         init();  
  45.         printf("%I64d\n", Lucas(n, m));  
  46.     }  
  47.     return 0;  
  48. }  
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值