0.神经网络技术的起始年份:神经网络技术可以追溯到1943年。
1.神经网络模型如何工作:
|-提取特征值
|-输入特征值
|-计算加权和
|-阈值函数
|-输出结果
2.模型运行中的问题:权重选的好,才算好的模型。可是人工设置并调试权重,麻烦且低效。后来Frank教授于1958年提出了感知机用来解决这个问题。
3.感知机的作用:让计算机更加自动且更加合理的设置权重大小。是首个可以根据样例数据来学习特征权重的模型。
4.学习:“感知机”通过“样例数据” “学习” 出“特征权重”。
5.感知机的局限:感知机无法解决异或问题。
6.神经网络的“第一次低潮期”:1969年Marvin Minsky教授等在《Perceptrons:An Introduction to Computational Geometry》一书中,证明了感知机只能解决线性可分问题,无法解决异或问题。且在当时的算力条件下,无法实现多层神经网络。书中做出了“基于感知机的研究注定失败”的结论,使得整个学术界对生物启发的机器学习模型进行了抨击,从此神经网络进入了十多年的“第一次低潮期”
7.第一次神经网络复兴:20世纪80年代末,分布式知识表达和反向传播算法的提出。
8.“分布式知识表达”核心思想:显示世界中的知识和概念应该通过多个神经元(neuron)来表达,而模型中的每一个神经元也应该参与表达多个概念。
9.“分布式知识表达”意义:为之后的深度学习奠定了基础。深层神经网络可以很好的解决雷士异或问题等线性不可分问题。
10.反向传播算法的提出:20世纪80年代末,David教授等人在1986年的《自然》杂志发表的文章中首次提出反向传播算法(back propagation)。
11.反向传播算法的作用:大幅降低了训练神经网络所需要的时间。降低了训练神经网络的计算复杂度。。
12.反向传播算法的意义:训练计算复杂度的大幅降低,算力的提升,使得多层神经网络成为可能。基于此,卷积神经网络、循环神经网络、LSTM(long short-term memory)模型(长序列建模模型)诞生并发展。
13.过去神经网络技术发展受到的限制:算力不足,数据不足。
14.如今神经网络技术得以飞速发展的原因:分布式计算/存储技术的成熟,解决了算力和数据存储的问题。
15.单词向量:将单词表示为一个相对较低维度的向量(比如100维或200维)。对于语义相近的单词,其对应的单词可以通过向量在空间中的距离来描述。可运算:king-man约等于queen-woman.
16.AlphaGo的组成:蒙特卡罗树、估值网络、走棋网络。由蒙特卡罗树来协同估值网络和走棋网络。