深度学习启蒙-01

从1943年神经网络技术起源至今,历经感知机解决权重设置难题,至20世纪80年代末分布式知识表达与反向传播算法推动深度学习发展,解决线性不可分问题。随着算力与数据存储技术进步,神经网络技术迎来爆发式增长。
摘要由CSDN通过智能技术生成

0.神经网络技术的起始年份:神经网络技术可以追溯到1943年。


1.神经网络模型如何工作:
    |-提取特征值
    |-输入特征值
        |-计算加权和
        |-阈值函数
    |-输出结果

2.模型运行中的问题:权重选的好,才算好的模型。可是人工设置并调试权重,麻烦且低效。后来Frank教授于1958年提出了感知机用来解决这个问题。

3.感知机的作用:让计算机更加自动且更加合理的设置权重大小。是首个可以根据样例数据来学习特征权重的模型。

4.学习:“感知机”通过“样例数据”  “学习” 出“特征权重”。

5.感知机的局限:感知机无法解决异或问题。

6.神经网络的“第一次低潮期”:1969年Marvin Minsky教授等在《Perceptrons:An Introduction to Computational Geometry》一书中,证明了感知机只能解决线性可分问题,无法解决异或问题。且在当时的算力条件下,无法实现多层神经网络。书中做出了“基于感知机的研究注定失败”的结论,使得整个学术界对生物启发的机器学习模型进行了抨击,从此神经网络进入了十多年的“第一次低潮期”

7.第一次神经网络复兴:20世纪80年代末,分布式知识表达和反向传播算法的提出。

8.“分布式知识表达”核心思想:显示世界中的知识和概念应该通过多个神经元(neuron)来表达,而模型中的每一个神经元也应该参与表达多个概念。

9.“分布式知识表达”意义:为之后的深度学习奠定了基础。深层神经网络可以很好的解决雷士异或问题等线性不可分问题。

10.反向传播算法的提出:20世纪80年代末,David教授等人在1986年的《自然》杂志发表的文章中首次提出反向传播算法(back propagation)。

11.反向传播算法的作用:大幅降低了训练神经网络所需要的时间。降低了训练神经网络的计算复杂度。。

12.反向传播算法的意义:训练计算复杂度的大幅降低,算力的提升,使得多层神经网络成为可能。基于此,卷积神经网络、循环神经网络、LSTM(long short-term memory)模型(长序列建模模型)诞生并发展。

13.过去神经网络技术发展受到的限制:算力不足,数据不足。

14.如今神经网络技术得以飞速发展的原因:分布式计算/存储技术的成熟,解决了算力和数据存储的问题。

15.单词向量:将单词表示为一个相对较低维度的向量(比如100维或200维)。对于语义相近的单词,其对应的单词可以通过向量在空间中的距离来描述。可运算:king-man约等于queen-woman.

16.AlphaGo的组成:蒙特卡罗树、估值网络、走棋网络。由蒙特卡罗树来协同估值网络和走棋网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值