对抗学习
文章平均质量分 55
NLP_wendi
这个作者很懒,什么都没留下…
展开
-
对抗学习常见方法代码实现篇
原理篇可参考:对抗学习概念、基本思想、方法综述FGM类定义class FGM(): def __init__(self, model): self.model = model self.backup = {} def attack(self, epsilon=1., emb_name='emb.'): # emb_name这个参数要换成你模型中embedding的参数名 for name, param in s原创 2022-04-17 17:24:16 · 1413 阅读 · 1 评论 -
对抗学习概念、基本思想、方法综述
对抗学习的基本概念要认识对抗训练,首先要了解 “对抗样本”,它首先出现在论文 Intriguing properties of neural networks 之中。简单来说,它是指对于人类来说 “看起来” 几乎一样,但对于模型来说预测结果却完全不一样的样本,比如下面的经典例子(一只熊猫加了点扰动就被识别成了长臂猿)对抗学习的基本思想Min-Max公式:max函数指的是,我们要找到一组在样本空间内、使Loss最大的的对抗样本(该对抗样本由原样本x和经过某种手段得到的扰动项r_adv共同组合得到原创 2022-04-16 20:28:02 · 23250 阅读 · 0 评论 -
GAN模型学习笔记
Paper链接:Generative Adversarial Nets摘要前言相关工作对抗网络理论结果实验优缺点结论和未来工作原创 2022-04-13 22:30:24 · 287 阅读 · 0 评论