1、如何校验数据的准确性
校验数据的准确性是数据开发过程中的一个重要步骤,以确保数据与实际情况一致。以下是一些方法和步骤,可用于校验数据的准确性:
1)制定数据验证规则
在数据开发完成后,首先是自查数据是否符合预期。包括数据类型、数据范围、格式、单位、以及空值和空值率等。例如,可以验证日期字段是否正确有效,货币字段是否有正确的货币符号,数值字段是否在预定范围内等(通过数据分布来校验,如最大值、最小值、平均值、空值率等);
2)比对参考数据
将数据与已知的参考数据进行比对。如果是重构的数据,可以原有数据进行比对,这里一般也是通过比对两份数据的分布情况(最大值、最小值、平均值、空值率等,对数据进行分段,不同分段的数据量进行对比);那么没有直接可以参考的数据,可以通过不同的加工方式,对比两份数据;
3)采样检验
从数据中随机抽取某一个机构/群体的数据,对数据进行汇总,然后对比;
从数据中随机抽取一些明细数据,看这些数据每一个指标是否加工正确;
4)重复校验
在数据正式上线前,还要让对应的业务同学进行数据校验核对,当确认无误后,才能上线生产;
5)建立数据监控
数据开发完,不是上线后就完事,需要建立完善质量监控,对数据进行定期的检查,以保证数据能够持续稳定正确的产出。
2、如何做好数据监控
1、明确数据质量标准和期望:
首先,需要明确数据质量的标准和期望。这可能包括数据的准确性、时效性、一致性、波动变化性等方面的监控要求。这些标准应该与业务需求和目标一致。
2、建立数据质量监控指标:
经过第一步的讨论,确定关键的数据质量指标,例如数据准确性、时效性、一致性等。这些指标应该能够量化数据质量,以便进行监控。数据量每天的波动不超过30%;
3、选择合适的监控手段:
选择适当的数据质量监控工具和技术,这里可以包含数据平台自带的功能,如智能化的监控手段(主键唯一,数据不为空),手工设置定制化的指标,如指标的空置率,数据量的波动大小限制。重要的数据任务,配置相对应基线和告警机制,保障数据质量,以便及时处理异常情况;
4、建立全链路的数据监控机制:
通过数据血缘,建立全链路的数据监控机制,从数据采集同步-分层数据加工-到应用,每层数据建立监控和告警,当上游数据出现异常,及时进行告警和拦截、避免下游任务消费;
5、建立自动化监控看板:
建立每天定时的数据质量监控看板,可以定期检查数据的产出情况,如产出时间、任务告警次数、失败次数等。生成监控报告,以便定期检查发现任务存在的问题,并及时进行优化;同时通过监控不断改进和调整监控规则;
6、数据质量异常问题的跟踪和记录:
站在整体团队的角度,需要对于发现的重大数据质量问题的事件,记录并且解决问题的方案。一、通过总结经验,避免同类问题的重复产生;二、有助于发现目前团队,数据质量监控流程存在的漏洞,及时采取补救措施;
总结:
数据质量监控是一个持续改进的过程。根据反馈和经验,不断改进数据质量规则和监控流程。
(数据质量检测和监控的核心工具——DQC和SLA,DQC和SLA)
3、数据团队的价值如何体现
数据的最终价值集中体现在两个方面,一是助力业务增长和二是建立数据标准和流程,来降本增效;具体可以体现在以下3个方面:
3.1、助力业务增长**
数据的价值首要体现在,要能够助力业务增长。如果数据不能为业务增长提供价值,那么团队很容易就会边缘化了。那么数据如何促进业务增长,需要做好以下几个关键点: