1829. 每个查询的最大异或值

本文详细解析了LeetCode上的第1829题,题目要求在给定有序数组nums中,每次查询时找到一个非负整数k,使得数组所有元素异或k的结果最大化,并在每次查询后移除数组最后一个元素。解决方案涉及到前缀异或、二进制运算以及优化策略。通过理解题意和运用适当算法,可以有效地求解每个查询的最大异或值。
摘要由CSDN通过智能技术生成

leetcode力扣刷题打卡

**题目:1829. 每个查询的最大异或值
**
描述:给你一个 有序 数组 nums ,它由 n 个非负整数组成,同时给你一个整数 maximumBit 。你需要执行以下查询 n 次:

找到一个非负整数 k < 2maximumBit ,使得 nums[0] XOR nums[1] XOR … XOR nums[nums.length-1] XOR k 的结果 最大化 。k 是第 i 个查询的答案。
从当前数组 nums 删除 最后 一个元素。
请你返回一个数组 answer ,其中 answer[i]是第 i 个查询的结果。

原代码##

class Solution {
public:
    vector<int> getMaximumXor(vector<int>& nums, int maximumBit) {
        int maxn = pow(2, maximumBit) - 1;
        vector<int>ans;
        //cout << maxn;
        for (int i = 0, k = 0; i < nums.size(); ++i) {
            k ^= nums[i];
            ans.push_back(maxn - k);
        }
        reverse(ans.begin(), ans.end());
        return ans;
    }
};

思路:

1、异或k之后的最大结果也就是2^(maximumBit) - 1;
2、因此要求k的话就用maxn- 前面异或的结果。
3、也是一个前缀和问题。
4、异或值最大也就是加和之后的二进制全为1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值