【题号(图论、建模)】XX-YY练习-第四题

文章讨论了一个关于图论的问题,给定球和箱子,每个球可以放入两个指定的箱子之一,目标是最小化奇数球数的箱子数量。通过建立图并分析连通块的奇偶性,可以得出每个连通块最多有一个奇数球的箱子。暴力求解方法得到AC代码,反思指出问题简化的重要性,并提出了更复杂情况的思考题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门:题目链接

题意:

问题描述

给出N 个球,和M个箱子,第i个球可以放进编号Ai箱子或者编号Bi箱子。你希望最后箱子内 包含奇数个球的箱子个数尽量少,问最少有多少个包含奇数个球的箱子。

输入格式

第一行两个整数N,M。

接下来N 行,每行2个整数,第i行两个整数依次表示Ai,Bi。

输出格式

一行一个整数表示答案。

数据范围

• 对于50%的数据,N ≤20。

• 对于100%的数据,1≤N,M ≤100000, 1≤Ai,Bi ≤M。

样例

样例输入

2 3

1 2

2 3

样例输出

0

 

做题过程

从“每个球可以放进两个箱子”这个条件。我就联想到图论,球看作边,箱子看成点。整个图就可以直接建出来。

建出来之后在图上尝试过几种方法:

1. 图上贪心,按照顺序每次尽量选择还是奇数个的箱子放。发现是错误的。反例...

2. Dfs建树然后贪心,..........................................。发现还是错误的,反例.....

最后提交的是暴力,得分50.

题解

建完图之后,每个连通块单独考虑。可以发现,一个联通块中如果出现两个奇数个球的箱子,则这两个箱子可以抵消掉。证明方法如下:

......

由此可以推出每个连通块最多会存在一个奇数个球的箱子(超过1个就可以任选两个抵消,直到没有为止)。

由于每个联通块的球的个数奇偶性是固定的,因此只需要看每个连通块的边数是奇数还是偶数就可以啦。

AC代码:

#include <bits/stdc++.h>

using namespace std ;

int N, M;

const int MAXN = 100010 ;

int fa[MAXN], g[MAXN] ;
int findfa(int x) {
	return fa[x] == x ? x : fa[x] = findfa(fa[x]);
}

int main() {
	scanf("%d%d", &N, &M) ;
	for (int i = 1; i <= M; i ++)
		fa[i] = i ;
	for (int i = 1; i <= N; i ++) {
		int u, v;
		scanf("%d%d", &u, &v) ;
		if (findfa(u) != findfa(v)) {
			g[findfa(u)] ^= g[findfa(v)] ;
			fa[findfa(v)] = findfa(u) ;
		}
		g[findfa(u)] ^= 1 ;
	}
	int ans = 0 ;
	for (int i = 1; i <= M; i ++)
		if (fa[i] == i)
			ans += g[i];
	cout << ans << endl ;
	return 0 ;
}

反思总结

建完图之后把问题想太难了,以为是贪心之类的算法,没想到是数奇数偶数。

思维拓展

举例:如果我们想要偶数个球的箱子尽量少,还能做吗?

举例2:如果每个球可以放进三个箱子,还能做吗?

举例3:如果我们想要奇数个球的箱子尽量多,还能做嘛?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值