给你一个整数 n
。如果两个整数 x
和 y
满足下述条件,则认为二者形成一个质数对:
1 <= x <= y <= n
x + y == n
x
和y
都是质数
请你以二维有序列表的形式返回符合题目要求的所有 [xi, yi]
,列表需要按 xi
的 非递减顺序 排序。如果不存在符合要求的质数对,则返回一个空数组。
注意:质数是大于 1
的自然数,并且只有两个因子,即它本身和 1
。
示例 1:
输入:n = 10 输出:[[3,7],[5,5]] 解释:在这个例子中,存在满足条件的两个质数对。 这两个质数对分别是 [3,7] 和 [5,5],按照题面描述中的方式排序后返回。
示例 2:
输入:n = 2 输出:[] 解释:可以证明不存在和为 2 的质数对,所以返回一个空数组。
提示:
1 <= n <= 106
思路:
首先利用埃拉托斯特尼筛法找到 N 以内的所有质数,接下来这道题就变成了有序版本的两数之和,即
LeetCode-Python-167. 两数之和 II - 输入有序数组。
时间复杂度:O(logN),因为要找质数
空间复杂度:O(logN),同上
class Solution:
def findPrimePairs(self, n: int) -> List[List[int]]:
nums = self.findPrime(n)
res = []
left, right = 0, len(nums) - 1
while left <= right:
s = nums[left] + nums[right]
if s == n:
res.append([nums[left], nums[right]])
right -= 1
elif s > n:
right -= 1
else:
left += 1
return res
def findPrime(self, n):
res = [1] * (n + 1)
for i in range(2, int(n ** 0.5) + 1):
if res[i]:
k = 2
while k * i <= n:
res[i * k] = 0
k += 1
return [i for i, x in enumerate(res) if x and i >= 2]